Recently, the necessity of video testing at the point of reception has become a challenge for video distributors. This paper presents a new system framework for managing the quality of video degradation detection. The system is based on objective video quality assessment metrics and unsupervised machine learning techniques that use the dimensionality reduction of time series. It was demonstrated that it is possible to detect anomalies in the video during video streaming in soft real time. In addition, the model discovers degradations based on the visible correlation between adjacent images in the video sequence regardless the quick or slow change of a scene in the sequence. With additional hardware manipulations on the equipment on the user side, the proposed solution can be used in practical implementations where the need for monitoring possible degradations during video streaming exists.
Interaction channels are special opportunities to improve customer satisfaction by offering a consistent problem-solving experience. Contact center employees are the link between the company and the customer. They are responsible for maintaining an appropriate relationship between the company and the customer. So, they are personally responsible for the customer experience. In this paper, we present an objective evaluation method for evaluating customer-agent interaction, i.e., evaluating the effectiveness of the realization of customer requests from calls. The evaluation method is automatic and does not depend on the relationship between the call center manager and the employees. The motivation for evaluating calls stems from the key performance characteristics of a contact center, of which we particularly emphasize service time, first call resolution, handling time, and others.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više