Logo

Publikacije (45140)

Nazad
P. Banfill, Irina Stipanovic, J. Tritthart, D. Bjegović, M. Serdar

A. Gigović-Gekić, M. Oruč, I. Vitez, B. Vujičić

J. Tomac, Jelena Vilajtović, Jurica Arapović, Đurđica Cekinović, E. Pugel, S. Jonjić

T. Došlić

A sequence $(x_n)_{; ; ; ; ; n \geq 0}; ; ; ; ; $ of positive real numbers is log-convex if the inequality $x_n^2 \leq x_{; ; ; ; ; n-1}; ; ; ; ; x_{; ; ; ; ; n+1}; ; ; ; ; $ is valid for all $n \geq 1$. We show here how the problem of establishing the log-convexity of a given combinatorial sequence can be reduced to examining the ordinary convexity of related sequences. The new method is then used to prove that the sequence of Motzkin numbers is log-convex.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više