Logo

Publikacije (51)

Nazad
P. Lambrechts, V. Tourtchine, Ismar Volic

As in the case of the associahedron and cyclohedron, the permutohedron can also be defined as an appropriate compactification of a configuration space of points on an interval or on a circle. The construction of the compactification endows the permutohedron with a projection to the cyclohedron, and the cyclohedron with a projection to the associahedron. We show that the preimages of any point via these projections might not be homeomorphic to (a cell decomposition of) a disk, but are still contractible. We briefly explain an application of this result to the study of knot spaces from the point of view of the Goodwillie-Weiss manifold calculus.

We give an overview of how calculus of the embedding functor can be used for the study of long knots and summarize various results connecting the calculus approach to the rational homotopy type of spaces of long knots, collapse of the Vassiliev spectral sequence, Hochschild homology of the Poisson operad, finite type knot invariants, etc. Some open questions and conjectures of interest are given throughout.

It is well-known that certain combinations of configuration space integrals defined by Bott and Taubes [11] produce cohomology classes of spaces of knots. The literature surrounding this important fact, however, is somewhat incomplete and lacking in detail. The aim of this paper is to fill in the gaps as well as summarize the importance of these integrals.

We associate a Taylor tower supplied by the calculus of the embedding functor to the space of long knots and study its cohomology spectral sequence. The combinatorics of the spectral sequence along the line of total degree zero leads to chord diagrams with relations as in finite type knot theory. We show that the spectral sequence collapses along this line and that the Taylor tower represents a universal finite type knot invariant.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više