The shallowest intracrustal layer (extending to 8 ± 2 km depth) beneath the Mars InSight Lander site exhibits low seismic wave velocity, which is likely related to a combination of high porosity and other lithological factors. The SsPp phase, an SV‐ to P‐wave reflection on the receiver side, is naturally suited for constraining the seismic structure of this top crustal layer since its prominent signal makes it observable with a single station without the need for stacking. We have analyzed six broadband and low‐frequency seismic events recorded on Mars and made the first coherent detection of the SsPp phase on the red planet. The timing and amplitude of SsPp confirm the existence of the ∼8 km interface in the crust and the large wave speed (or impedance) contrast across it. With our new constraints from the SsPp phase, we determined that the average P‐wave speed in the top crustal layer is between 2.5 and 3.2 km/s, which is a more precise and robust estimate than the previous range of 2.0–3.5 km/s obtained by receiver function analysis. The low velocity of Layer 1 likely results from the presence of relatively low‐density lithified sedimentary rocks and/or aqueously altered igneous rocks that also have a significant amount of porosity, possibly as much as 22%–30% by volume (assuming an aspect ratio of 0.1 for the pore space). These porosities and average P‐wave speeds are compatible with our current understanding of the upper crustal stratigraphy beneath the InSight Lander site.
Significance The depth and sharpness of a midmantle seismic discontinuity, associated with the phase transition from mineral olivine to its higher-pressure polymorphs, provide essential clues to understanding the temperature and composition of Martian mantle. Using data from NASA’s InSight mission, we examined five marsquakes located 3,400 to 4,400 km away from the InSight lander and observed triplications of the P and S waves that resulted from the interaction with a seismic discontinuity produced by the postolivine transition. Our observations indicate that the Martian mantle is more iron rich than Earth,and both planets have a similar potential temperature. Our geodynamic modeling further constrains the mantle composition and surface heat flow and indicates that the mantle was cold in the early Noachian.
Lunar surface activities during Apollo and terrestrial analogue lunar mission simulations have commonly focused on traverses that prioritize surface observations and sample collection activities. Along the way, geophysical measurements are often made. However, they are not necessarily made in a way that optimizes information about the physical subsurface properties, which is something that geophysics can provide. In 2010, NASA simulated a high-quality multiweek human lunar rover traverse analogue mission in the San Francisco volcanic field in Arizona. The traverse route and associated science station locations were selected based on addressing surface observation and sampling tasks. Geophysical studies were not included in the simulation. We returned to the same field area and obtained data on 19 active seismic refraction geophone lines from the science station locations accessed during the simulation. We analyzed the data to calculate 1D seismic velocity profiles for each of the lines. Results revealed up to seven distinct seismically defined material types, including a nearly ubiquitous veneer of regolith of variable thickness at the surface. Results also provided depth and thickness of the seven material types in the first 60 m of the subsurface at each of the science station locations. These cannot be obtained by geologic observations of the outcrops. Systematic interpretation of the area's overall subsurface stratigraphy was not feasible due to the geophysically nonsystematic nature of the original traverse's prioritization of the science station locations. The added geophysical understanding of a region could drive additional geologic investigations to locate samples of otherwise unknown material through the location of surface exposures or coring. This emphasizes the importance of synchronizing geologic and geophysical research requirements during lunar traverse planning and execution to optimize addressing scientific and utilization questions.
Global seismographic networks (GSNs) emerged during the late nineteenth and early twentieth centuries, facilitated by seminal international developments in theory, technology, instrumentation, and data exchange. The mid‐ to late‐twentieth century saw the creation of the World‐Wide Standardized Seismographic Network (1961) and International Deployment of Accelerometers (1976), which advanced global geographic coverage as seismometer bandwidth increased greatly allowing for the recording of the Earth's principal seismic spectrum. The modern era of global observations and rapid data access began during the 1980s, and notably included the inception of the GEOSCOPE initiative (1982) and GSN (1988). Through continual improvements, GEOSCOPE and the GSN have realized near‐real time recording of ground motion with state‐of‐art data quality, dynamic range, and timing precision to encompass 180 seismic stations, many in very remote locations. Data from GSNs are increasingly integrated with other geophysical data (e.g., space geodesy, infrasound and Interferometric Synthetic Aperture Radar). Globally distributed seismic data are critical to resolving crust, mantle, and core structure; illuminating features of the plate tectonic and mantle convection system; rapid characterization of earthquakes; identification of potential tsunamis; global nuclear test verification; and provide sensitive proxies for environmental changes. As the global geosciences community continues to advance our understanding of Earth structure and processes controlling elastic wave propagation, GSN infrastructure offers a springboard to realize increasingly multi‐instrument geophysical observatories. Here, we review the historical, scientific, and monitoring heritage of GSNs, summarize key discoveries, and discuss future associated opportunities for Earth Science.
For over three Earth years the Marsquake Service has been analyzing the data sent back from the Seismic Experiment for Interior Structure—the seismometer placed on the surface of Mars by NASA’s InSight lander. Although by October 2021, the Mars seismic catalog included 951 events, until recently all these events have been assessed as lying within a radius of 100° of InSight. Here we report two distant events that occurred within days of each other, located on the far side of Mars, giving us our first glimpse into Mars’ core shadow zone. The first event, recorded on 25 August 2021 (InSight sol 976), shows clear polarized arrivals that we interpret to be PP and SS phases at low frequencies and locates to Valles Marineris, 146° ± 7° from InSight. The second event, occurring on 18 September 2021 (sol 1000), has significantly more broadband energy with emergent PP and SS arrivals, and a weak phase arriving before PP that we interpret as Pdiff. Considering uncertain pick times and poorly constrained travel times for Pdiff, we estimate this event is at a distance between 107° and 147° from InSight. With magnitudes of MwMa 4.2 and 4.1, respectively, these are the largest seismic events recorded so far on Mars.
Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free‐surface multiple of the P‐wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs‐RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P‐to‐S (Ps)‐ and PPs‐RFs with InSight recordings of five marsquakes. Our Ps‐RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps‐RFs, our PPs‐RFs lack an arrival at 7.2 s lag time. Whereas Ps‐RFs on Mars could be equally well fit by a two‐ or three‐layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three‐layer crust, and is highly sensitive to velocity and thickness of intra‐crustal layers. We show that a three‐layer crust is also preferred by S‐to‐P (Sp)‐RFs. While the deepest interface of the three‐layer crust represents the crust‐mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre‐existing crustal materials. PPs‐RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data‐constrained circumstances such as planetary missions.
We investigate the scattering attenuation characteristics of the Martian crust and uppermost mantle to understand the structure of the Martian interior. We examine the energy decay of the spectral envelopes for 21 high-quality Martian seismic events from Sol 128 to Sol 500 of InSight operations. We use the model of Dainty et al. (1974b) to approximate the behavior of energy envelopes resulting from scattered wave propagation through a single diffusive layer over an elastic half-space. Using a grid search, we mapped the layer parameters that fit the observed InSight data envelopes. The single diffusive layer model provided better fits to the observed energy envelopes for High Frequency (HF) and Very High Frequency (VF) than for the Low Frequency (LF) and Broadband (BB) events. This result is consistent with the suggested source depths (Giardini et al., 2020) for these families of events and their expected interaction with a shallow scattering layer. The shapes of the observed data envelopes do not show a consistent pattern with event distance, suggesting that the diffusivity and scattering layer thickness is non-uniform in the vicinity of InSight at Mars. Given the consistency in the envelope shapes between HF and VF events across epicentral distances and the tradeoffs between the parameters that control scattering, the dimensions of the scattering layer remain unconstrained but require that scattering strength decreases with depth and that the rate of decay in scattering strength is fastest near the surface. This is generally consistent with the processes that would form scattering structures in planetary lithospheres.
The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars, has been providing direct information on Martian interior structure and dynamics of that planet since it landed. Compared to seismic recordings on Earth, ground motion measurements acquired by SEIS on Mars are made under dramatically different ambient noise conditions, but include idiosyncratic signals that arise from coupling between different InSight sensors and spacecraft components. This work is to synthesize what is known about these signal types, illustrate how they can manifest in waveforms and noise correlations, and present pitfalls in structural interpretations based on standard seismic analysis methods. We show that glitches, a type of prominent transient signal, can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such as lander modes which are affected by variations in temperature and wind conditions over the course of the Martian Sol, can also contaminate ambient noise results. Therefore, both types of signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that signal processing in the presence of identified nonseismic signals must be informed by an understanding of the underlying physical processes in order for high fidelity waveforms of ground motion to be extracted. While the origins of most idiosyncratic signals are well understood, the 2.4 Hz resonance remains debated and the literature does not contain an explanation of its fine spectral structure. Even though the selection of idiosyncratic signal types discussed in this paper may not be exhaustive, we provide guidance on best practices for enhancing the robustness of structural interpretations.
Single seismometer structure Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al., Knapmeyer-Endrun et al., and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science, abf2966, abf8966, abi7730, this issue p. 434, p. 438, p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.
Single seismometer structure Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al., Knapmeyer-Endrun et al., and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science, abf2966, abf8966, abi7730, this issue p. 434, p. 438, p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian mantle. A planet’s crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 ± 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 ± 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.
Single seismometer structure Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al., Knapmeyer-Endrun et al., and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science, abf2966, abf8966, abi7730, this issue p. 434, p. 438, p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.
<p>The scattering of seismic waves is the signature of random heterogeneities, present in the lithospheric structure of a terrestrial planet. It is the result of refraction and reflection of the seismic waves generated by a quake, when they cross materials with different shear rigidity, bulk modulus, and density and therefore different seismic wave velocities, compared to the ambient space.  On Earth, the seismic waves show relatively weak scattering, identified in later arriving coda waves that follow the main arrivals of body waves and decay with time. In contrast, seismic wave scattering is much more significant on the Moon, where the high heterogeneous structure of the lunar megaregolith, produced through millions of years of impact bombardment, is a structure that creates an extreme scattering environment.</p> <p>The landing of the NASA InSight mission on Mars in 2018, which carried and deployed a seismometer for the first time on the Martian ground, offered a pristine dataset for the investigation and analysis of the characteristics of the scattering attenuation of the Martian crust and uppermost mantle which is important for understanding the structure of the Martian interior. Lognonné et al. (2020) used a methodology based on the radiative transfer model (Margerin et al., 1998) to offer the first constraints for the scattering and attenuation in the Martian crust. In this study, we performed a further examination based on more and newer events of the Martian Seismic Catalog (InSight Marsquake Service, 2021).</p> <p>The Marsquake Catalog contains events that are categorized according to the frequency content of the seismic signal (Clinton et al., 2021). In this study, we used 19 events of 4 different families, namely the Low Frequency, Broadband, High Frequency, and Very High Frequency events, for our investigation. We focused our investigation on the characteristics of the S-coda waveforms and for this reason, we worked on the respective energy envelopes. We manually picked the envelopes, defining the time window of the S-coda waves, as well the frequency range for each event, directly from the spectrograms of the events' signals, using an appropriately developed visual tool.</p> <p>We used a modeling approach (Dainty et al., 1974) that was developed for the computation of the energy envelopes of shallow events (Lunar impacts) and a diffusive, highly scattering layer, sitting over an elastic half-space. The energy envelope depends on the thickness of the diffusive layer, the range of the seismic ray, the diffusivity and the attenuation in the top layer, and the seismic wave velocity in the underneath elastic half-space. We analyzed all the tradeoffs between the terms of the modeling equation, namely the geometrical relationship of the velocity contrast between the diffusive layer and the elastic half-space with the seismic ray range and the diffusive layer thickness, the diffusivity with the diffusive layer thickness, and between the diffusivity and the velocity contrast of the two examined layers.</p> <p>The presence of the aforementioned tradeoffs made the definition of a unique model a very hard task, as the information for the azimuthal characteristics of the signal is not available for the examined events. This is a limitation that exists in seismology only while working with one station, with the InSight seismometer being the only station on a planet, and the amplitude of the seismic signal is not big enough to perform a specific polarization analysis and derive the azimuthal origin of the recorded signal. For this reason, we reviewed the fit between the modeling and the data, depending on the frequency content of the events.</p> <p>The Low Frequency and the Broadband events, which have a frequency content mainly below the tick noise detected at 1 Hz, could not satisfy the modeling approach of a simple diffusive layer. The spectral envelopes of the S-coda waves of these events are decaying very rapidly, which suggests an origin in a more elastic environment. This is in agreement with previous studies (Giardini et al., 2020) that suggest that these events are generated deeper in the Martian mantle. For this reason, we applied another approach to these signals, with an energy envelope equation designed for deep moonquakes (Dainty et al.,1974), but it was not either capable to fit the examined data envelopes, suggesting the absence of a very thick megaregolith structure on Mars.</p> <p>Based on the results of the High Frequency (HF) and Very High Frequency (VF) events we observed a range of possible paths and diffusivities that can satisfy the data and we investigated the tradeoffs between the parameters of a modeling equation that control the shape of the energy envelope for the events. The analysis of these tradeoffs does not permit us to make any assumptions about the depth of the diffusive region in the Martian crust and the upper mantle as their azimuthal characteristics are unknown and therefore it is not feasible to tell if the difference in the result analysis reflects vertical or lateral variations of the uppermost diffusive layer in the Martian lithosphere.</p> <p>The results of this study illustrate one of the challenges in working with single-station seismic data where event location information, including distance, azimuth, and depth are crucial for understanding the lateral variation in seismic properties of a planet. The existence of a seismic network on the planetary scale will improve the ability of phase peaking and location identification of the events and therefore it will give additional constraints for a similar analysis.</p> <p>References</p> <p>Clinton, J. F. et al. (2021). The Marsquake catalogue from InSight, sols 0–478.Phys Earth Planet In, 310:106595.</p> <p>Dainty,  A. M. et al. (1974). Seismic scattering and shallow structure of the Moon in Oceanus Procellarum.The Moon,9(1-2):11–29.</p> <p>Giardini, D. et al. (2020). The seismicity of Mars.Nat Geosci, 13(3):205–212.InSight Marsquake Service (2021). </p> <p>Mars Seismic Catalogue, InSight Mission; V5 2021-01-04.</p> <p>Lognonné, P. et al. (2020).  Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data.NatGeosci, 13(3):213–220.</p> <p>Margerin, L. et al. (1998).  Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q.GeophysJ Int, 134(2):596–612.</p>
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više