Logo
User Name

Vedran Lekić

Društvene mreže:

Jingchuan Wang, V. Lekić, N. Schmerr, Yu J. Gu, Yi Guo, Rongzhi Lin

The Pacific large low-shear-velocity province (LLSVP), as revealed by cluster analysis of global tomographic models, hosts multiple internal anomalies, including a notable gap (~20° wide) between the central and eastern Pacific. The cause of the structural gap remains unconstrained. Directly above this structural gap, we identify an anomalously thick mantle transition zone east of the East Pacific Rise, the fastest-spreading ocean ridge in the world, using a dense set of SS precursors. The area of the thickened transition zone exhibits faster-than-average velocities according to recent tomographic images, suggesting perturbed postolivine phase boundaries shifting in response to lowered temperatures. We attribute this observation to episodes of Mesozoic-aged (250 to 120 million years ago) intraoceanic subduction beneath the present-day Nazca Plate. The eastern portion of the Pacific LLSVP was separated by downwelling because of this ancient oceanic slab. Our discovery provides a unique perspective on linking deep Earth structures with surface subduction.

H. Samuel, M. Drilleau, A. Rivoldini, Zongbo Xu, Quancheng Huang, R. F. Garcia, V. Lekić, Jessica C. E. Irving, J. Badro et al.

R. Maguire, V. Lekić, D. Kim, N. Schmerr, J. Li, C. Beghein, Q. Huang, J. Irving, F. Karakostas et al.

On 4 May 2022 the InSight seismometer SEIS‐VBB recorded the largest marsquake ever observed, S1222a, with an initial magnitude estimate of MWMa ${M}_{W}^{\mathrm{M}\mathrm{a}}$ 4.6. Understanding the depth and source properties of this event has important implications for the nature of tectonic activity on Mars. Located ∼37° to the southeast of InSight, S1222a is one of the few non‐impact marsquakes that exhibits prominent surface waves. We use waveform modeling of body waves (P and S) and surface waves (Rayleigh and Love) to constrain the focal mechanism, assuming a double‐couple source, and find that S1222a likely resulted from reverse faulting in the crust (source depth near 22 km). We estimate the scalar moment to be 2.5 × 1015–3.5 × 1015 Nm (magnitude MW 4.2–4.3). Our results suggest active compressional tectonics near the dichotomy boundary on Mars, likely due to thermal contraction from planetary cooling.

K. Izquierdo, V. Lekić, L. Montési

Gravity inversions have contributed greatly to our knowledge of the interior of planetary bodies and the processes that shaped them. However, previous global gravity inversion methods neglect the inference of mantle density anomalies when using techniques to decrease the non‐uniqueness of the inversion. In this work, we present a novel global gravity inversion algorithm, named THeBOOGIe, suited to inferring global‐scale density anomalies within the crust and mantle of planetary bodies. The algorithm embraces the nonuniqueness inherent in gravity inversions by not prescribing at the outset a density interface or depth range of interest. Instead, the method combines a Bayesian approach with a flexible incorporation of prior geological or geophysical information to infer density anomalies at any depth. A validation test using synthetic lunar‐like gravity data shows that THeBOOGIe can constrain the lateral location of crustal density anomalies but tends to overestimate their thicknesses. Importantly, THeBOOGIe can detect deep mantle density anomalies and quantify the level of confidence in the inferred density models. Our results show that THeBOOGIe can provide complementary information to one‐dimensional seismic models of the interior of the terrestrial planets and the Moon by constraining density anomalies that are not spherically symmetric. Additionally, THeBOOGIe is specially suited to constraining the interior of partially differentiated bodies where these large‐scale density anomalies are more likely to exist. Finally, thanks to the flexible use of priors, THeBOOGIe is an essential tool to understand the interior of planetary bodies lacking additional constraints.

Doyeon Kim, C. Durán, Domenico Giardini, A. Plesa, C. Simon, Stähler, Christian Boehm, V. Lekić, S. McLennan et al.

We report observations of Rayleigh waves that orbit around Mars up to three times following the S1222a marsquake. Averaging these signals, we find the largest amplitude signals at 30 and 85 s central period, propagating with distinctly different group velocities of 2.9 and 3.8 km/s, respectively. The group velocities constraining the average crustal thickness beneath the great circle path rule out the majority of previous crustal models of Mars that have a >200 kg/m3 density contrast across the equatorial dichotomy between northern lowlands and southern highlands. We find that the thickness of the Martian crust is 42–56 km on average, and thus thicker than the crusts of the Earth and Moon. Considered with the context of thermal evolution models, a thick Martian crust suggests that the crust must contain 50%–70% of the total heat production to explain present‐day local melt zones in the interior of Mars.

J. Irving, V. Lekić, C. Durán, M. Drilleau, Doyeon Kim, A. Rivoldini, Amir Khan, H. Samuel, D. Antonangeli et al.

Significance Mars has a liquid iron alloy core at its center. Using seismic data gathered by the InSight mission, we have made the first observations of seismic waves traveling through Mars’ core. We use the travel times of core-transiting seismic waves, relative to ones which remain in the mantle, to constrain properties of the core and construct the first models of the elastic properties of the entire planet. Our results are consistent with a core rich in sulfur, with smaller fractions of oxygen, carbon and hydrogen.

D. Kim, S. Stähler, S. Ceylan, V. Lekić, R. Maguire, G. Zenhäusern, J. Clinton, D. Giardini, A. Khan et al.

Using seismic recordings of event S1222a, we measure dispersion curves of Rayleigh and Love waves, including their first overtones, and invert these for shear velocity (VS) and radial anisotropic structure of the Martian crust. The crustal structure along the topographic dichotomy is characterized by a fairly uniform vertically polarized shear velocity (VSV) of 3.17 km/s between ∼5 and 30 km depth, compatible with the previous study by Kim et al. (2022), https://doi.org/10.1126/science.abq7157. Radial anisotropy as large as 12% (VSH > VSV) is required in the crust between 5 and 40 km depth. At greater depths, we observe a large discontinuity near 63 ± 10 km, below which VSV reaches 4.1 km/s. We interpret this velocity increase as the crust‐mantle boundary along the path. Combined gravimetric modeling suggests that the observed average crustal thickness favors the absence of large‐scale density differences across the topographic dichotomy.

C. Beghein, J. Li, E. Weidner, R. Maguire, J. Wookey, V. Lekić, P. Lognonné, W. Banerdt

The largest seismic event ever recorded on Mars, with a moment magnitude of 4.7 ± 0.2, is the first event to produce both Love and Rayleigh wave signals. We measured their group velocity dispersion between about 15 and 40 s period and found that no isotropic depth‐dependent velocity model could explain the two types of waves wave simultaneously, likely indicating the presence of seismic anisotropy. Inversions of Love and Rayleigh waves yielded velocity models with horizontally polarized shear waves traveling faster than vertically polarized shear waves in the top 10–25 km. We discuss the possible origins of this signal, including the preferred orientation of anisotropic crystals due to shear deformation, alignment of cracks, layered intrusions due to an impact, horizontal layering due to the presence of a large‐scale sediment layer on top of the crust, and alternation of sedimentation and basalt layers deposits due to large volcanic eruptions.

Jiaqi Li, C. Beghein, S. McLennan, A. Horleston, C. Charalambous, Quancheng Huang, G. Zenhäusern, E. Bozdağ, W. Pike et al.

D. Kim, W. Banerdt, S. Ceylan, D. Giardini, V. Lekić, P. Lognonné, C. Beghein, É. Beucler, S. Carrasco et al.

We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust. Description An insightful impact On 24 December 2021, the seismometer for the InSight mission on Mars detected a large seismic event with a distinct signature. Posiolova et al. discovered that the event was caused by a meteor impact on the surface of Mars, which was confirmed by satellite observations of a newly formed 150-kilometer crater. The surface nature and size of the impact allowed Kim et al. to detect surface waves from the event, which have yet to be observed on Mars. These surface waves help to untangle the structure of the Martian crust, which has various amounts of volcanic and sedimentary rock, along with subsurface ice, in different regions of the planet (see the Perspective by Yang and Chen). The characteristics of the impact itself are important because they provide a seismic fingerprint of an impact event that is different from the marsquakes observed so far. —BG A new crater formed on the surface of Mars was detected with the seismometer on the InSight mission.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više