High dynamic range (HDR) imaging has become one of the foremost imaging methods capable of capturing and displaying the full range of lighting perceived by the human visual system in the real world. A number of HDR compression methods for both images and video have been developed to handle HDR data, but none of them has yet been adopted as the method of choice. In particular, the backwards-compatible methods that always maintain a stream/image that allow part of the content to be viewed on conventional displays make use of tone mapping operators which were developed to view HDR images on traditional displays. There are a large number of tone mappers, none of which is considered the best as the images produced could be deemed subjective. This work presents an alternative to tone mapping-based HDR content compression by identifying a single exposure that can reproduce the most information from the original HDR image. This single exposure can be adapted to fit within the bit depth of any traditional encoder. Any additional information that may be lost is stored as a residual. Results demonstrate quality is maintained as well, and better, than other traditional methods. Furthermore, the presented method is backwards-compatible, straightforward to implement, fast and does not require choosing tone mappers or settings.
High dynamic range (HDR) imaging has become one of the foremost imaging methods capable of capturing and displaying the full range of lighting perceived by the human visual system in the real world. A number of HDR compression methods for both images and video have been developed to handle HDR data, but none of them has yet been adopted as the method of choice. In particular, the backwards-compatible methods that always maintain a stream/image that allow part of the content to be viewed on conventional displays make use of tone mapping operators which were developed to view HDR images on traditional displays. There are a large number of tone mappers, none of which is considered the best as the images produced could be deemed subjective. This work presents an alternative to tone mapping-based HDR content compression by identifying a single exposure that can reproduce the most information from the original HDR image. This single exposure can be adapted to fit within the bit depth of any traditional encoder. Any additional information that may be lost is stored as a residual. Results demonstrate quality is maintained as well, and better, than other traditional methods. Furthermore, the presented method is backwards-compatible, straightforward to implement, fast and does not require choosing tone mappers or settings.
Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.
Schizophrenia can be a devastating lifelong psychotic disorder with a poor prognosis. National guidelines in the UK recommend the provision of cognitive behavioral therapy (CBT) to all those suffering with psychotic disorders, but there is a lack of trained therapists in the UK able to provide such a treatment. Developing high quality automated technologies that can serve as an adjunct to conventional CBT should enhance the provision of this therapy, and increase the efficiency of the therapists in practice. The latter will occur by enabling alternate professionals to aid in the delivery of therapy, to enable behavioral experiments to be conducted in the clinic, and for sessions to be recorded and re-played such that the patient can deliver therapy to him or herself. As such the system will enable patients to become experts in, and providers of, their own treatment and decrease the number of sessions needed to be led by a trained CBT therapist. A key feature of any such system is the level of realism required to ensure a compelling session in which the user is not adversely affected by the system itself. This paper presents a high-fidelity virtual environment to help better understand the environmental triggers for psychosis.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više