A pancreatic pseudocyst (PPC) is typically a complication of acute and chronic pancreatitis, trauma or pancreatic duct obstruction. The diagnosis of PPC can be made if an acute fluid collection persists for 4 to 6 wk and is enveloped by a distinct wall. Most PPCs regress spontaneously and require no treatment, whereas some may persist and progress until complications occur. The decision whether to treat a patient who has a PPC, as well as when and with what treatment modalities, is a difficult one. PPCs can be treated with a variety of methods: percutaneous catheter drainage (PCD), endoscopic transpapillary or transmural drainage, laparoscopic surgery, or open pseudocystoenterostomy. The recent trend in the management of symptomatic PPC has moved toward less invasive approaches such as endoscopic- and image-guided PCD. The endoscopic approach is suitable because most PPCs lie adjacent to the stomach. The major advantage of the endoscopic approach is that it creates a permanent pseudocysto-gastric track with no spillage of pancreatic enzymes. However, given the drainage problems, the monitoring, catheter manipulation and the analysis of cystic content are very difficult or impossible to perform endoscopically, unlike in the PCD approach. Several conditions must be met to achieve the complete obliteration of the cyst cavity. Pancreatic duct anatomy is an important factor in the prognosis of the treatment outcome, and the recovery of disrupted pancreatic ducts is the main prognostic factor for successful treatment of PPC, regardless of the treatment method used. In this article, we review and evaluate the minimally invasive approaches in the management of PPCs.
This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.
Breast cancer is the most frequently diagnosed type of cancer nowadays and it is the leading cause of death caused by cancer in women (Jemal et al., 2011). It has become one of the main health problems both in developed and in developing countries. More than a million new cases of breast cancer are diagnosed every year all over the world (Ferlay et al., 2004). According to researches of the American Cancer Society (American Cancer Society, 2002), since 2002 breast cancer has been the second largest cause of death caused by cancer in women. According to a research conducted in 2007 in Korea, breast cancer was the second most frequently detected type of cancer in women (Kyu-Won et al., 2010). In 2008 there were 3, 2 million (Ferlay et al., 2010) new cases of cancer in Europe out of which 421, 000 (13,1%) (Ferlay et al., 2010) cases were breast cancers. According to the mentioned research, after colorectal cancer (436, 000 cases) breast cancer is the second most frequently registered cancer in Europe (Ferlay et al., 2010). In Bosnia and Herzegovina 1600 new cases of breast cancer are registered every year (Saric, 2009). Nowadays, mammography represents the best diagnostic way for detection of breast cancer. This diagnostic medical discipline applies a specially designed roentgen apparatus for breast examination. A good topographic position and a high degree of mobility of the breast (Fajdic, 2001) enable a great number of early diagnosed breast cancers detected with mammography. Ultrasound breast diagnostic is often used as an additional method to classic mammography for breast cancer detection, especially identification of cysts in the breast (Fajdic, 2001). Nowadays there are classic (film-screen) and digital mammography. While digital mammography enables a superior contrast resolution, its spatial resolution is somewhat lower in regard to the standard technique (Kuzmiak et al., 2005). Advantages and disadvantages of these two types of mammography were compared in more than ten studies (Rosselli Del Turco et al., 2007; Skaane, 2009). One of the main arguments for giving priority to digital mammography in regard to classic mammography was the fact that digital systems cause less radiation during an examination (Hermann et al., 2002; Moran et al., 2005). The newest study shows that digital mammography cannot guarantee significantly lower patient doses in regard to classic mammography (Hauge et al., 2011). The objective of most studies about mammography is to define benefits and risks caused by application of radiation in
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više