Conventional ophthalmic dosage forms, although being simple to apply and presenting great patients' compliance, display poorer drug bioavailability and retention time on the eye surface. To cope with these problems, one must formulate novel drug delivery systems, such as nanosystems, for ocular drug delivery. Different formulation methods of nanoparticles have been developed, but some of them, such as the supercritical fluid method, have not reached their full potential in ocular drug delivery. This article aims to present the possibilities of the supercritical fluid method when preparing nanosystems for ocular drug delivery. This method could be used more frequently and efficiently because it is environmentally friendly and produces nanoparticles of the desired physicochemical properties, which is especially important in ocular drug delivery considering its peculiarities. Modifications of the supercritical fluid method can be used when a drug has some specific properties, which is an additional benefit in ocular drug delivery.
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. Solid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. The optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients’ non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
The kinetics of passive transport of ketoprofen and metformin, as model substances for high and low permeability, respectively, across the artificial membrane under the influence of the pH of donor solution was investigated. There was an upward trend in the apparent permeation coefficient (Papp) of ketoprofen with the decrease in pH to a value close to pKa. At the pH value below pKa the permeation coefficient had lower value, due to the higher retention of ketoprofen in the artificial membrane. Metformin is a low permeable compound, and the highest permeation values were recorded at pH 7.4. Two dissociation constants determine that metformin at physiological pH exists as a hydrophilic cationic molecule, i.e. predominantly in ionized form. At pH values below 2.8, metformin mainly exists in diprotonated form, and it was, thus, very poorly permeable. The highest retention, i.e. affinity of both ketoprofen and metformin to the membrane, was at the lowest pH values, which is explained by different mechanisms. At higher pH values of donor compartment the substances showed significantly less affinity to the membrane. The obtained values of apparent permeation coefficients at studied pH values showed good correlation with the obtained experimental values by other in vitro methods.
MicroRNAs (miRNAs) represent endogenous small RNAs that post-transcriptionally regulate gene expression and, thus they are involved in the onset and progression of various diseases and conditions (Bader et al., 2010) such as for overweight and obesity. Antiadipogenic miRNA-27a is a negative regulator in fat metabolism, which inhibits adipocyte differentiation through downregulation of adipogenic marker genes (e.g. PPARγ) (Kim et al., 2010). Reduced miRNA-27a levels are often associated with the development of obesity and, therefore, this miRNA might represent a promising candidate for miRNA mimic replacement therapy (Lin et al., 2009). However, the application of naked RNAs has shown low membrane permeability, cellular uptake, and rapid degradation in the circulation. The present study aimed to develop a cationic, lipid-based nanoparticle system for targeting adipose tissue and delivering miRNA-27a. These systems are composed of positively charged nanostructured lipid carriers (cNLCs) and negatively charged miRNAs, which results in complex formation based on electrostatic interactions between these components. Materials and methods
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više