Logo

Publikacije (102)

Nazad
Erick Hernandez-Gutierrez, Ricardo Coronado-Leija, Manon Edde, M. Dumont, Jean-Christophe Houde, M. Barakovic, Stefano Magon, Alonso Ramírez-Manzanares et al.

Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics. These multi-tensors are estimated using the stable, accurate and robust to noise Multi-Resolution Discrete Search method (MRDS). The spatial coherence of the multi-tensor field estimated with MRDS, which includes up to three anisotropic and one isotropic tensors, is tractography-regularized using the Track Orientation Density Imaging method. Our end-to-end tractometry pipeline goes from raw data to track-specific multi-tensor-metrics tract profiles that are robust to noise and crossing fibers. A comprehensive evaluation conducted in a phantom simulating healthy and damaged tissue with the standard model, as well as in a healthy cohort of 20 individuals scanned along 5 time points, demonstrates the advantages of using multi-tensor metrics over traditional single-tensor metrics in tractometry. Qualitative assessment in a cohort of patients with relapsing-remitting multiple sclerosis reveals that the pipeline effectively detects white matter anomalies in the presence of crossing fibers and lesions.

Gretel Sanabria-Diaz, A. Cagol, Po-Jui Lu, M. Barakovic, Mario Ocampo-Pineda, Xinjie Chen, Matthias Weigel, E. Ruberte et al.

Objective Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. Methods We studied 128 MS patients (75 relapsing–remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi‐shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). Results Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of “repair” (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of “repair” lesion was negatively associated with disability (β = −0.04; p < 0.001) and sNfL (β = −0.16; p < 0.001) at follow‐up. The frequency of the “damage” class was higher in progressive than relapsing–remitting patients (p < 0.05) and was related to disability (baseline: β = −0.078; follow‐up: β = −0.076; p < 0.001) and age (baseline: β = −0.078; p < 0.001). Stable lesions were more frequent in relapsing–remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = −0.07; p < 0.001) at baseline. Further, “mixed” lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. Interpretation These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2025;97:134–148

A. Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, M. Barakovic, L. Melie-García, Xinjie Chen, Antoine Lutti et al.

Background and Objectives In patients with multiple sclerosis (PwMS), thalamic atrophy occurs during the disease course. However, there is little understanding of the mechanisms leading to volume loss and of the relationship between microstructural thalamic pathology and disease progression. This cross-sectional and longitudinal study aimed to comprehensively characterize in vivo pathologic changes within thalamic microstructure in PwMS using advanced multiparametric quantitative MRI (qMRI). Methods Thalamic microstructural integrity was evaluated using quantitative T1, magnetization transfer saturation, multishell diffusion, and quantitative susceptibility mapping (QSM) in 183 PwMS and 105 healthy controls (HCs). The same qMRI protocol was available for 127 PwMS and 73 HCs after a 2-year follow-up period. Inclusion criteria for PwMS encompassed either an active relapsing-remitting MS (RRMS) or inactive progressive MS (PMS) disease course. Thalamic alterations were compared between PwMS and HCs and among disease phenotypes. In addition, the study investigated the relationship between thalamic damage and clinical and conventional MRI measures of disease severity. Results Compared with HCs, PwMS exhibited substantial thalamic alterations, indicative of microstructural and macrostructural damage, demyelination, and disruption in iron homeostasis. These alterations extended beyond focal thalamic lesions, affecting normal-appearing thalamic tissue diffusely. Over the follow-up period, PwMS displayed an accelerated decrease in myelin volume fraction [mean difference in annualized percentage change (MD-ApC) = −1.50; p = 0.041] and increase in quantitative T1 (MD-ApC = 0.92; p < 0.0001) values, indicating heightened demyelinating and neurodegenerative processes. The observed differences between PwMS and HCs were substantially driven by the subgroup with PMS, wherein thalamic degeneration was significantly accelerated, even in comparison with patients with RRMS. Thalamic qMRI alterations showed extensive correlations with conventional MRI, clinical, and cognitive disease burden measures. Disability progression over follow-up was associated with accelerated thalamic degeneration, as reflected by enhanced diffusion (β = −0.067; p = 0.039) and QSM (β = −0.077; p = 0.027) changes. Thalamic qMRI metrics emerged as significant predictors of neurologic and cognitive disability even when accounting for other established markers including white matter lesion load and brain and thalamic atrophy. Discussion These findings offer deeper insights into thalamic pathology in PwMS, emphasizing the clinical relevance of thalamic damage and its link to disease progression. Advanced qMRI biomarkers show promising potential in guiding interventions aimed at mitigating thalamic neurodegenerative processes.

J. Müller, Po-Jui Lu, A. Cagol, E. Ruberte, Hyeong-Geol Shin, Mario Ocampo-Pineda, Xinjie Chen, C. Tsagkas et al.

Background and Objectives Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS) lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data, estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with MS and healthy individuals. Methods This prospective MS cohort study included patients with MS fulfilling the McDonald Criteria 2017 and healthy individuals, aged 18 years or older, with no other neurologic comorbidities. Participants underwent MRI at baseline and after 2 years, including multiecho GRE-(T2*) and FAST-(T2) sequences. Using χ-separation, we generated myelin-sensitive and iron-sensitive susceptibility maps. White matter lesions (WMLs), cortical lesions (CLs), surrounding normal-appearing white matter (NAWM), and normal-appearing gray matter were segmented on fluid-attenuated inversion recovery and magnetization-prepared 2 rapid gradient echo images, respectively. Cross-sectional group comparisons used Wilcoxon rank-sum tests, longitudinal analyses applied Wilcoxon signed-rank tests. Associations with clinical outcomes (disease phenotype, age, sex, disease duration, disability measured by Expanded Disability Status Scale [EDSS], neurofilament light chain levels, and T2-lesion number and volume) were assessed using linear regression models. Results Of 168 patients with MS (median [interquartile range (IQR)] age 47.0 [21.7] years; 101 women; 6,898 WMLs, 775 CLs) and 103 healthy individuals (age 33.0 [10.5] years, 57 women), 108 and 62 were followed for a median of 2 years, respectively (IQR 0.1; 5,030 WMLs, 485 CLs). At baseline, WMLs had lower myelin (median 0.025 [IQR 0.015] parts per million [ppm]) and iron (0.017 [0.015] ppm) than the corresponding NAWM (myelin 0.030 [0.012]; iron 0.019 [0.011] ppm; both p < 0.001). After 2 years, both myelin (0.027 [0.014] ppm) and iron had increased (0.018 [0.015] ppm; both p < 0.001). Younger age (p < 0.001, b = −5.111 × 10−5), lower disability (p = 0.04, b = −2.352 × 10−5), and relapsing-remitting phenotype (RRMS, 0.003 [0.01] vs primary progressive 0.002 [IQR 0.01], p < 0.001; vs secondary progressive 0.0004 [IQR 0.01], p < 0.001) at baseline were associated with remyelination. Increment of myelin correlated with clinical improvement measured by EDSS (p = 0.015, b = −6.686 × 10−4). Discussion χ-separation, a novel mathematical model applied to multiecho T2*-images and T2-images shows that young RRMS patients with low disability exhibit higher remyelination capacity, which correlated with clinical disability over a 2-year follow-up.

Philippe Karan, Manon Edde, Guillaume Gilbert, M. Barakovic, Stefano Magon, Maxime Descoteaux

PURPOSE To fully characterize the orientation dependence of magnetization transfer (MT) and inhomogeneous MT (ihMT) measures in the whole white matter (WM), for both single-fiber and crossing-fiber voxels. METHODS A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution. This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, the orientation dependence inside 31 different WM bundles was characterized to evaluate the homogeneity of the effect. Variation of the results within and between-subject was assessed from a 12-subject dataset. RESULTS Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Heterogeneity of the orientation dependence across bundles was observed, but homogeneity within similar bundles was also highlighted. Differences in behavior between MT and ihMT measures, as well as the ratio and saturation versions of these, were noted. CONCLUSION Orientation dependence characterization was proven possible over the entirety of WM. The vast range of effects and subtleties of the orientation dependence on MT measures showed the need for, but also the challenges of, a correction method.

M. Barakovic, Matthias Weigel, A. Cagol, Sabine A. Schaedelin, R. Galbusera, Po-Jui Lu, Xinjie Chen, L. Melie-García et al.

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.

R. Galbusera, Matthias Weigel, Erik Bahn, Sabine A. Schaedelin, A. Cagol, Po-Jui Lu, M. Barakovic, L. Melie-García et al.

Federico Spagnolo, Susanna Gobbi, E. Zsoldos, Manon Edde, Matthias Weigel, C. Granziera, Maxime Descoteaux, M. Barakovic et al.

Introduction Multi-shell diffusion Magnetic Resonance Imaging (dMRI) data has been widely used to characterise white matter microstructure in several neurodegenerative diseases. The lack of standardised dMRI protocols often implies the acquisition of redundant measurements, resulting in prolonged acquisition times. In this study, we investigate the impact of the number of gradient directions on Diffusion Tensor Imaging (DTI) and on Neurite Orientation Dispersion and Density Imaging (NODDI) metrics. Methods Data from 124 healthy controls collected in three different longitudinal studies were included. Using an in-house algorithm, we reduced the number of gradient directions in each data shell. We estimated DTI and NODDI measures on six white matter bundles clinically relevant for neurodegenerative diseases. Results Fractional Anisotropy (FA) measures on bundles where data were sampled at the 30% rate, showed a median L1 distance of up to 3.92% and a 95% CI of (1.74, 8.97)% when compared to those obtained at reference sampling. Mean Diffusivity (MD) reached up to 4.31% and a 95% CI of (1.60, 16.98)% on the same premises. At a sampling rate of 50%, we obtained a median of 3.90% and a 95% CI of (1.99, 16.65)% in FA, and 5.49% with a 95% CI of (2.14, 21.68)% in MD. The Intra-Cellular volume fraction (ICvf) median L1 distance was up to 2.83% with a 95% CI of (1.98, 4.82)% at a 30% sampling rate and 3.95% with a 95% CI of (2.39, 7.81)% at a 50% sampling rate. The volume difference of the reconstructed white matter at reference and 50% sampling reached a maximum of (2.09 ± 0.81)%. Discussion In conclusion, DTI and NODDI measures reported at reference sampling were comparable to those obtained when the number of dMRI volumes was reduced by up to 30%. Close to reference DTI and NODDI metrics were estimated with a significant reduction in acquisition time using three shells, respectively with: 4 directions at a b value of 700 s/mm2, 14 at 1000 s/mm2, and 32 at 2000 s/mm2. The study revealed aspects that can be important for large-scale clinical studies on bundle-specific diffusion MRI.

Sara Bosticardo, S. Schiavi, Sabine A. Schaedelin, Matteo Battocchio, M. Barakovic, Po-Jui Lu, Matthias Weigel, L. Melie-García et al.

Introduction Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity in vivo by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, combining tractography with myelin-sensitive maps is necessary to investigate myelin-weighted brain connectivity. Tractometry is designated for this purpose, but it suffers from some serious limitations. Our study assessed the effectiveness of the recently proposed Myelin Streamlines Decomposition (MySD) method in estimating myelin-weighted connectomes and its capacity to detect changes in myelin network architecture during the process of normal aging. This approach opens up new possibilities compared to traditional Tractometry. Methods In a group of 85 healthy controls aged between 18 and 68 years, we estimated myelin-weighted connectomes using Tractometry and MySD, and compared their modulation with age by means of three well-known global network metrics. Results Following the literature, our results show that myelin development continues until brain maturation (40 years old), after which degeneration begins. In particular, mean connectivity strength and efficiency show an increasing trend up to 40 years, after which the process reverses. Both Tractometry and MySD are sensitive to these changes, but MySD turned out to be more accurate. Conclusion After regressing the known predictors, MySD results in lower residual error, indicating that MySD provides more accurate estimates of myelin-weighted connectivity than Tractometry.

A. Cagol, P. Benkert, L. Melie-García, Sabine A. Schaedelin, Selina Leber, C. Tsagkas, M. Barakovic, R. Galbusera et al.

Background and Objectives Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. Methods From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. Results In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] −1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC −1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). Discussion Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.

A. Cagol, Rosa Cortese, M. Barakovic, Sabine A. Schaedelin, E. Ruberte, M. Absinta, F. Barkhof, Massimiliano Calabrese et al.

Key Points Question Can multiple sclerosis (MS) be differentiated from a wide range of non-MS conditions showing brain white matter lesions using solely imaging biomarkers for cortical lesions (CLs) and central vein sign (CVS)? Findings In this cross-sectional study including 1051 participants, the presence of CLs had high specificity and low sensitivity, while application of the 40% CVS rule resulted in high specificity and moderate sensitivity for MS diagnosis. CVS and CLs outperformed the contribution of infratentorial, periventricular, and juxtacortical lesions in supporting the diagnosis of MS. Meaning The findings indicate that CVS and CLs may be valuable tools to increase the accuracy of MS diagnosis.

A. Abdelhak, P. Benkert, Sabine A. Schaedelin, W. Boscardin, C. Cordano, J. Oechtering, Kirtana Ananth, C. Granziera et al.

E. Canales-Rodríguez, M. Pizzolato, Feng-Lei Zhou, M. Barakovic, Jean-Philippe Thiran, Derek K. Jones, Geoffrey J. M. Parker, T. Dyrby

This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion‐relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power‐law approach and a T2‐based pore size estimation technique.

Philippe Karan, Manon Edde, Guillaume Gilbert, M. Barakovic, Stefano Magon, Maxime Descoteaux

Purpose To characterize the orientation dependence of magnetization transfer (MT) measures in white matter (WM) and propose a first correction method for such measures. Methods A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution (CSD). This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, a first correction method was proposed from the results of characterization, aiming at removing said orientation dependence. Both methods were tested on a 20-subject dataset and effects on tractometry results were also evaluated. Results Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Unwanted effects of the orientation dependence on MT measures were highlighted, for which the correction method was able to produce improved results. Conclusion Encouraging results of corrected MT measures showed the importance of such correction, opening the door for future research on the topic.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više