Self-Sovereign Identity (SSI) is a novel and emerging, decentralized digital identity approach that enables entities to control and manage their digital identifiers and associated identity data while enhancing trust, privacy, security, and the many other properties identified and analyzed in this paper. The paper provides an overview and classification of the SSI properties, focusing on an in-depth analysis, furthermore, presenting a comprehensive collection of SSI properties that are important for the implementation of the SSI system. In addition, it explores the general SSI process flow, and highlights the steps in which individual properties are important. After the initial purification and classification phase, we then validated properties among experts in the field of Decentralized and Self-Sovereign Identity Management using an online questionnaire, which resulted in a final set of classified and verified SSI properties. The results can be used for further work on definition and standardization of the SSI field.
The Internet of Things (IoT) is a leading trend with numerous opportunities accompanied by advantages as well as disadvantages. Parallel with IoT development, significant privacy and personal data protection challenges are also growing. In this regard, the General Data Protection Regulation (GDPR) is often considered the world’s strongest set of data protection rules and has proven to be a catalyst for many countries around the world. The concepts and interaction of the data controller, the joint controllers, and the data processor play a key role in the implementation of the GDPR. Therefore, clarifying the blurred IoT actors’ relationships to determine corresponding responsibilities is necessary. Given the IoT transformation reflected in shifting computing power from cloud to the edge, in this research we have considered how these computing paradigms are affecting IoT actors. In this regard, we have introduced identification of IoT actors according to a new five-computing layer IoT model based on the cloud, fog, edge, mist, and dew computing. Our conclusion is that identifying IoT actors in the light of the corresponding IoT data manager roles could be useful in determining the responsibilities of IoT actors for their compliance with data protection and privacy rules.
This chapter provides an overview of research opportunities and issues in IoT forensics. It gives a quick introduction to forensics and digital forensics. Key specifics of IoT forensics are explained. Issues that arise from IoT related challenges in all phases of a forensic investigation are presented. Some opportunities that IoT brings to forensics are pointed out. An example of an IoT forensics case is provided. A detailed research overview is given, providing information on the main research directions with a brief overview of relevant papers. The chapter concludes with some ideas for future research.
The scope, scale, and intensity of real, as well as potential attacks, on the Smart Grid have been increasing and thus gaining more attention. An important component of Smart Grid cybersecurity efforts addresses the availability and access to the power and related information and communications infrastructures. We overload the term, Denial-of-Service (DoS), to refer to these attacks in the Smart Grid. In this paper, we provide a holistic and methodical presentation of the DoS attack taxonomies as well as a survey of potential solution techniques to help draw a more concerted and coordinated research into this area, lack of which may have profound consequences. To the best of our knowledge, the literature does not have such a comprehensive survey study of the DoS attacks and solutions for the Smart Grid.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više