Logo

Publikacije (17)

Nazad

Man is continuously exposed to ionizing radiation because of the presence of naturally occurring radioactive materials (NORM) in the environment. Various technological processes of processing and using of materials that contain natural radionuclides generate materials of enhanced natural radioactivity (TENORM). The largest contribution to irradiance with natural sources of ionizing radiation is the exposure of the population to indoor radon. This gas originates from the radioactive decay of 226Ra and 224Ra that are present in the soil under houses and building materials. Depending on the type of building materials, indoor exposure to radon at dwellings and workplaces can be over a thousand times greater than in outdoor space. In Bosnia and Herzegovina, no valid and comprehensive radiological studies on the building materials have been performed that would guarantee for their dosimetric safety use for installation in residential and industrial buildings, highways, as well as their application for other purposes. The quantification of the radon levels that comes from building materials is a necessary and very important part of the global protection of the population from ionizing radiation. This paper presents the first results of a study on the radon activity concentrations in building materials used in Bosnia and Herzegovina. Measurements were performedwith a professional Alpha GUARD system. The mean values of the activity concentration of the exhaled radon of investigated building materials varied from 10 Bqm-3 to 101 Bqm-3, radon exhalation rate values ranged from 77.0 mBqm-2h-1 to 777.7 mBqm-2h-1. Gamma dose rate was in the range 57–112 nSv h−1.

Abstract Investigations of natural radioactivity in water, air, and soil are conducted frequently and routinely. Exposure to high concentrations of natural radioactive radon gas can cause irradiation of respiratory organs, which can lead to lung cancer. This paper presents measurements of radon activity concentrations in dug wells and natural springs of the Tuzla area (Bosnia and Herzegovina), which ranged from 214 to 3702 mBq L-1. Our results have shown that the radon activity concentration did not exceed the EU reference level for radon in drinking water (100 Bq L-1).

Abstract With gamma spectrometric method 23 samples of mineral and thermal waters of Bosnia and Herzegovina were analyzed. Activity concentrations of the investigated radionuclides were in the range 12–346 mBq·L−1 for 40K, 1.1–791 mBq·L−1 for 226Ra, 0.2–221 mBq·L−1 for 228Ra, 13–367 mBq·L−1 for 238U, and 0.6–17 mBq·L−1 for 235U. For all investigated radionuclides annual effective dose was estimated. The estimated total annual committed effective dose received by population as a result of ingestion of water was in the range 0.11–2.51 μSv·y−1 for thermal water and in the range 0.11–38.8 μSv·y−1 for mineral water. Measurement of activity concentrations of natural radionuclides in the examined samples was carried out with a gamma-spectrometer with high-purity germanium (HPGe) detector, having a relative efficiency of 70%.

Zejnil Tresnjo, F. Adrović, Alma Trumic

By coal mining and exploatation, radioactive radon gas, which is captured in natural geological structures, is reallocated from the deep coal layers. Hence it is concentrated in the depots and coal seams of the mines or being transported to the surface of the earth where it can significantly change the levels of radioactivity in the working premises and residences. This paper presents the results of a three-year research of radon activity concentration in the air in hole and surface coal mines of Bosnia and Herzegovina. Detected concentrations of radon in the coal gaseous structure, atmosphere and other ambient media are in correlation with the properties of geological structures, technology for obtaining coal and meteo-climatic changes. They were measured with Alpha GUARD PQ 2000 radon portable measuring system (instruments Genitron-Frankfurt) and RadoMeter 2000 (Radosys LTD. Budapest), using the SS-NTD method.

M. Ninkovic, F. Adrović

It is often necessary to estimate the exposure rate at a distance from radionuclide emitting gamma or X rays. Such calculations may be required for planning radiation protection measures around radioactive sources, for calibration radiation monitoring instruments, for patient containing radionuclides or for estimating the absorbed dose to patients receiving brachytherapy. The factor relating activity and exposure rate has been various names: the k factor (Johns, 1961), the specific gamma ray constant (ICRU Rep. 10a, 1962), exposure rate constant (Parker et al., 1978) and gamma rate constant (Kereiakes & Rosenstein, 1980). Conversion to SI units required that this factor be replaced by the air kerma rate constant which is now defined as:  = 2 l A ( air dK dt )  (1)

Gordana Milić, Bajram Jakupi, S. Tokonami, R. Trajković, T. Ishikawa, I. Čeliković, P. Ujic, O. Čuknić et al.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više