Logo
Nazad
E. Cunningham, V. Lekić
19 1. 10. 2019.

Constraining crustal structure in the presence of sediment: a multiple converted wave approach

Receiver functions are sensitive to sharp seismic velocity variations with depth and are commonly used to constrain crustal thickness. The H–κ stacking method of Zhu & Kanamori is often used to constrain both the crustal thickness (H) and ${V_P}$/${V_S}$ ratio ($\kappa $) beneath a seismic station using P-to-s converted waves (Ps). However, traditional H–κ stacks require an assumption of average crustal velocity (usually ${V_P}$). Additionally, large amplitude reverberations from low velocity shallow layers, such as sedimentary basins, can overprint sought-after crustal signals, rendering traditional H–$\ \kappa $ stacking uninterpretable. We overcome these difficulties in two ways. When S-wave reverberations from sediment are present, they are removed by applying a resonance removal filter allowing crustal signals to be clarified and interpreted. We also combine complementary Ps receiver functions, Sp receiver functions, and the post-critical P-wave reflection from the Moho (SPmp) to remove the dependence on an assumed average crustal ${V_P}$. By correcting for sediment and combining multiple data sets, the crustal thickness, average crustal P-wave velocity and crustal ${V_P}$/${V_S}$ ratio is constrained in geological regions where traditional H–$\ \kappa $ stacking fails, without making an initial P-wave velocity assumption or suffering from contamination by sedimentary reverberations.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više