An Effective Integrated Metaheuristic Algorithm For Solving Engineering Problems
To tackle a specific class of engineering problems, in this paper, we propose an effectively integrated bat algorithm with simulated annealing for solving constrained optimization problems. Our proposed method (I-BASA) involves simulated annealing, Gaussian distribution, and a new mutation operator into the simple Bat algorithm to accelerate the search performance as well as to additionally improve the diversification of the whole space. The proposed method performs balancing between the grave exploitation of the Bat algorithm and global exploration of the Simulated annealing. The standard engineering benchmark problems from the literature were considered in the competition between our integrated method and the latest swarm intelligence algorithms in the area of design optimization. The simulations results show that I-BASA produces high-quality solutions as well as a low number of function evaluations.