Passivity-based control of robotic manipulators for safe cooperation with humans
This paper presents a novel approach to the control of articulated robots in unstructured environments. The proposed control ensures several properties. First, the controller guarantees the achievement of a goal position without getting stuck in local minima. Then, the controller makes the closed-loop system passive, which renders the approach attractive for applications where the robot needs to safely interact with humans. Finally, the control law is explicitly shaped by the safety measure – the danger field. The proposed control law has been implemented and validated in a realistic experimental scenario, demonstrating the effectiveness in driving the robot to a given configuration in a cluttered environment, without any offline planning phase. Furthermore, the passivity of the system enables the robot to easily accommodate external forces on the tool, when a physical contact between the robot and the environment is established.