Prediction of discharge coefficients for contaminated circular multi-hole orifice flow meters with deep learning algorithms
This study investigates the use of deep learning algorithms to predict the discharge coefficient (Cd) of contaminated multi-hole orifice flow meters with circular opening. Datasets (MHO1 and MHO2) were obtained from computational fluid dynamic simulations for two circular multi-hole orifice flow meters of different geometries. To evaluate the performance and generalization capabilities of different models, three distinct scenarios, each involving different dataset configurations and normalization techniques were designed. For each scenario, three deep learning models (feedforward neural networks, convolutional neural network, and recurrent neural network) were implemented and evaluated based on their performance metrics, including mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). For all three scenarios eight models for each neural network model were developed (FFNN – four models, CNN – two models, RNN – two models). The same structure of models was used across all scenarios to ensure consistency in the evaluation process. Key input parameters include geometrical and flow variables such as β – parameter, contamination thickness, radial distance, Reynolds number, and orifice diameters. Results demonstrate the effectiveness of deep learning in accurately predicting discharge coefficient for different contamination conditions and different geometries. This study showed that deep learning models can be used for prediction of discharge coefficients for multi-hole orifice flow meters of similar geometry, based on data obtained from one orifice flow meter for different contamination parameters.