Logo
Nazad
T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D. Hickstein, D. Zusin, C. Gentry, F. Dollar, C. Mancuso, C. Hogle, O. Kfir, D. Legut, K. Carva, J. Ellis, K. Dorney, Cong Chen, O. Shpyrko, E. Fullerton, O. Cohen, P. Oppeneer, D. Milošević, A. Becker, A. Jaroń-Becker, T. Popmintchev, M. Murnane, H. Kapteyn
253 3. 11. 2015.

Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

Significance The new ability to generate circularly polarized coherent (laser-like) beams of short wavelength high harmonics in a tabletop-scale setup is attracting intense interest worldwide. Although predicted in 1995, this capability was demonstrated experimentally only in 2014. However, all work to date (both theory and experiment) studied circularly polarized harmonics only in the extreme UV (EUV) region of the spectrum at wavelengths >18 nm. In this new work done in a broad international collaboration, we demonstrate the first soft X-ray high harmonics with circular polarization to wavelengths λ < 8 nm and the first tabletop soft X-ray magnetic circular dichroism (XMCD) measurements, and also uncover new X-ray light science that will inspire many more studies of circular high-harmonic generation (HHG). We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.


Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više