Logo
Nazad
I. Šestan, Melisa Ahmetović, Selma Hasanović
0 27. 10. 2025.

Adsorption Kinetics of Cu(II), Cr(III), and Ni(II) Ions from a Multicomponent Solution Using Synthetic Zeolite

Zeolites are particularly suitable adsorbents due to their pronounced ion-exchange capacity, high efficiency, stability, and the ability to be regenerated and reused multiple times. Their characteristic crystalline structure enables the exchange of sodium, potassium, calcium, and magnesium ions with heavy metal cations present in solution. For the successful application of zeolites under industrial conditions, a detailed understanding of the adsorption mechanisms and kinetics is essential, as it allows for process optimization and identification of key limiting factors. Experimental approaches typically involve varying the adsorbent mass and the initial concentration of the adsorbate in order to determine the optimal conditions for achieving maximum adsorption efficiency. A moisture content of 3.95% and ash content of 91.28% indicate high thermal and structural stability of the zeolite, while the presence of Na⁺ ions (0.2435 mmol g⁻¹) in the material confirms that cation exchange is the dominant mechanism. Adsorption of heavy metals was investigated in a batch reactor at initial concentrations of 10, 50, and 100 mg/L, at a constant temperature of 298 K, with stirring at 200 rpm for 60 minutes. The amount of adsorbed ions was found to increase with rising equilibrium concentrations in the solution. Metal ion concentrations were determined using atomic absorption spectrophotometry. The highest adsorption was observed for Cu(II) ions within 5 minutes, while Cr(III) and Ni(II) ions reached their maximum adsorption within 20 minutes. The experimental data fit best to the Langmuir isotherm model, and the adsorption efficiency followed the order: Cu(II) > Cr(III) > Ni(II).

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više