Fabrication of 3D-printed PLA microneedles as physical permeation enhancers in transdermal delivery
Many different and innovative approaches have been investigated to reduce the barrier effects of the stratum corneum (SC) and one of those are microneedles. Microneedles (MNs) are micron-sized needles which assist drug delivery through skin by creating microchannels (micron-scale pores) in SC that are large enough to enable drugs, including macromolecules, to enter the skin while being small enough to avoid pain, irritation and needle phobia. They have the capacity to play a role in modern healthcare as they reduce pain, tissue damage and transmission of infection and have potential for selfadministration in comparison to traditional needles. MNs have been fabricated by a variety of methods, from a range of materials (including silicon, glass, metal, carbohydrates and polymers) and in varying geometries (Quinn et al., 2014). Additive manufacturing (AM), more commonly known as three-dimensional (3D) printing represents a new, cutting-edge technology of 3D objects fabricated from a digital model generated using computer-aided design (CAD) software by fusing or depositing proper material (e.g., ceramics, liquids, metal, plastic, powders or even living cells) in layers. Suitable thermoplastic material in the form of a filament is fed into the printer by rollers, where it is heated to just above its softening point (glass transition temperature, Tg) by heating elements into a molten state. The melted or softened material guided by gears is moved towards heat end where it is extruded from the printer’s head, through a nozzle and subsequently deposited layer-by-layer on a build plate, cooling and solidifying in under a second. The printer’s head moves within the xand y-axes, whereas the platform can move within the z-axis, thus creating 3D structures (Alhnan et al., 2016; Goole and Amighi, 2016; Jamróz, 2018; Prased and Smyth, 2016). The aim of this work was to fabricate biodegradable PLA microneedles using innovative FDM 3D-printing technology on two different 3D printers and then chemically etch their arrays to obtain ideally sized and shaped needles.