Understanding the response of fruit crops to drought stress and irrigation needs under climate change conditi
Climate change has significantly altered weather patterns, increasing the frequency and intensity of drought events and posing serious challenges to agricultural production, particularly fruits. Water scarcity and increased evapotranspiration demands, posing critical challenges to global agriculture and threatening the sustainability of fruit production. Understanding the response of fruit crops to drought stress and their specific irrigation needs is essential for developing resilient and sustainable cultivation systems. This work aims to consolidate existing research and provide a comprehensive analysis of strategies to mitigate the impacts of water scarcity on fruit crops. The paper focuses on the following key areas: (1) evaluating the growth and performance of fruit crops across diverse environments and cultivation methods; (2) assessing the water needs of fruit crops, including evapotranspiration rates, crop coefficients, and strategies for efficient water use; (3) identifying and recommending the most effective irrigation methods; (4) exploring advanced tools for real-time monitoring of plant water status; and (5) comparing and evaluating existing models for quantifying plant water requirements under drought conditions, with an emphasis on their potential integration into decision support systems (DSS). By addressing these critical aspects, it aims to provide actionable insights and foster the adoption of innovative irrigation and water management strategies to support sustainable fruit crop production in the context of climate change.