Achievement of Thermal Comfort in the Building Through Interaction with External Factors
Building envelope has significant role in the building sector. It represents immediate interaction between outside and inside environment. In dependence of its characteristics and opposed requirements, it affects on achievement of the thermal comfort of inside area and closer environment. Existing standards in the building sector dictate air tightness of an envelope, limiting air infiltration with the aim to save energy, but also influence on the inside environmental quality in situation when optimal air quality cannot be achieved due to the insufficient ventilation of the room. Besides that, building envelope in dependence of its characteristics, under the influence of Sun light, can less or better absorb heat flux and cause the temperature rise on the surface of the building. Specific characteristic of material to absorb and retain solar thermal heat, in urban environments, contributes more and more to the presence of the phenomenon known as urban heat island. For interaction of the building envelope with the environment factors, the building of Mechanical Engineering Faculty was chosen as a case study, on which the measurement of the envelope surface temperature was performed with the aim to empirically confirm presence of higher temperatures on building envelope. At the same time, the measurement of indoor air quality parameters, as carbon dioxide concentration, inside air temperature and relative humidity was performed, to estimate ventilation efficiency of inside area. Results of the measurement have shown the presence of relatively high surface temperature on the building envelope, which is the in accordance with the earlier research about the existence of higher surface temperatures in dependence of its characteristics and environment. Measurement of indoor air quality parameters showed higher carbon dioxide concentrations, especially in winter semester, which values exceeded by 60 % of recommended ones. Higher carbon dioxide concentrations are result of insufficient ventilation of the room, and it is indicator that optimal cooling system with frequent ventilation is necessary criteria that needs to be fulfilled to achieve quality inside environment from the aspect of the comfort, productivity and health of users. In the recent years, there has been noticed evident increase of the outside temperature, especially in urban area due to the construction and characteristics of applied materials in buildings, resulting also in the climate change. It is necessary to emphasize that planners and designers in the conceptual stage of construction or renovation of the buildings, incorporate solutions and decisions about the materialization of the envelope, which will affect on the reduction of urban heat island, considering as one of the energy efficiency measures.