From Adipose Dysfunction to Multi-Organ Steatosis: Defining the Metabolic Steatotic Axis
Steatosis extends beyond the liver to the pancreas, heart, and skeletal muscle, yet prevailing definitions remain narrowly organ-focused. This narrative review introduces the Metabolic Steatotic Axis (MSA) as a framework that captures the dynamic, bidirectional interactions among these organs, driving systemic metabolic dysfunction. We synthesize evidence linking lipotoxicity, inflammatory signaling, and endocrine cross-talk into a self-amplifying network accelerating insulin resistance, β-cell failure, and cardiometabolic risk. The MSA concept provides a rationale for axis-based staging systems and composite biomarker panels to quantify cumulative disease burden better and refine risk stratification. We highlight phenotypic heterogeneity within MSA stages, the possible hierarchy of organ vulnerability, and the implications for prognosis and therapy. Viewing pharmacological and lifestyle interventions through the MSA lens reframes them as systemic modulators rather than organ-specific treatments, underscoring the need for multi-organ endpoints in clinical trials. Finally, we outline priorities for longitudinal imaging, multi-omics integration, and global harmonization to translate the MSA from a conceptual construct to a clinically actionable paradigm. By unifying fragmented observations into a systemic model, the MSA has the potential to reshape disease classification, therapeutic strategies, and precision medicine in metabolic disorders.