Current-Mode Controlled Battery Emulator
This paper proposes a battery emulator based on a bidirectional non-inverting buck-boost power electronics converter. With the capability of bidirectional operation, it can emulate both charging and discharging processes. The proposed emulator is controlled with the advanced I2 dual current-mode control (I2DCMC) algorithm, combined with a feedforward control, which ensures fast and accurate tracking of the voltage and current characteristics of the batteries. The emulator is universal in terms of the various mathematical models of the batteries, which can be implemented in real time. It has no limitations regarding different battery types. Detailed analysis and the design procedure of the proposed battery emulator are presented. The performances of the emulator are validated with simulation and experimental results for three battery types: polymer Li-ion, conventional Li-ion, and lead–acid battery. Both steady and transient states are analyzed, especially transitions between charging and discharging phases. The possibility of simple time scaling of charging/discharging processes is successfully achieved and demonstrated, which is very important in making tests faster, with preserved battery characteristics. Considering its low-cost and user-friendly operation, the proposed emulator can be a good alternative to the real batteries in experimental tests of different power electronics systems. The prototype, which is developed for the experimental verification of the emulator, is designed for and limited to the research of lower power ratings systems of up to 100 W. It is suitable in education to easily demonstrate the behavior of the batteries in multiple scenarios in controlled laboratory conditions.