Twisting Sliding Mode Control of a Nonlinear Quadrotor UAV Under Perturbations and Disturbances
This paper introduces twisting sliding mode control method (TWSMC) to track 3D trajectories of a quadrotor unmanned aerial vehicle (UAV) exposed to bounded disturbances and perturbations. The key idea behind TWSMC is to introduce a nonlinear twisting term into the sliding surface design, which enables the system to switch between different sliding modes (SMs) smoothly, thereby reducing the chattering phenomenon and improving control performance. Moreover, a high-gain adaptation (HGA) algorithm is adopted in the TWSMC scheme to additionally attenuate the chattering effect, where the switching control gain increases during the convergent phase and decreases in the sliding phase. Through the comprehensive simulation study, it is shown that the proposed approach exhibits improved robustness and performance in tracking a reference under disturbances and perturbations.