Molybdenum(VI) Oxide-Modified Silica Gel as a Novel Sorbent for the Simultaneous Solid-Phase Extraction of Eight Metals with Determination by Flame Atomic Absorption Spectrometry
Abstract A silica-based inorganic sorbent was synthesized by the thermal decomposition of ammonium heptamolybdate on silica and applied for the preconcentration and simultaneous determination of Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb in river water samples using a column system with flame atomic absorption spectrometry. Attenuated total reflection-Fourier transformation infrared spectroscopy, scanning electron microscopy, and electron dispersive spectroscopy were used for sorbent characterization. The effects of pH, sample volume, eluent type, eluent concentration, eluent volume, sample flow rate, and matrix ions (Al, Bi, Ca, Mg, and Zn) on the recovery of the metals in model solutions were investigated. The adsorption capacities (µmol g−1) of SiO2-MoO3 were 88.96 (Cd), 169.69 (Co), 153.85 (Cr), 188.88 (Cu), 179.05 (Fe), 163.81 (Mn), 136.31 (Ni), and 38.61 (Pb). The detection limits of the method were 9.09, 10.82, 10.77, 49.57, 31.64, 6.40, 8.86, 19.15 µg L−1 for Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb, respectively, with a preconcentration factor of 25. The developed method was used for the determination of the target metals in real samples and the recoveries for spiked samples were found to be from 91.2% to 102.9%.