Logo
User Name

Azra Frkatović-hodžić

Društvene mreže:

A. Frkatović-Hodžić, Jordan Bortz, Andrea Guarglia, Erin Macdonald Dunlop, Anika Mijakovac, Nina Š imuni ć, Bri š ki Peter, Ward Ozren Pola š ek, G. Lauc et al.

T. Pribić, J. K. Das, Lovorka Đerek, D. Belsky, M. Orenduff, K. M. Huffman, William E. Kraus, Helena Deriš, Jelena Šimunović et al.

In this pilot study, a subset of CALERIE Phase 2 (No. NCT00427193, registered 25th Jan 2007) participants (n = 26) were evaluated for the effects of 2 years of 25% calorie restriction (CR) on N-glycosylation of IgG, plasma, and complement C3, as well as IgG-based biological age (GlycAge). Plasma samples were collected at baseline (BL), 12 (12mo), and 24 months (24mo). IgG galactosylation was higher at 24mo compared to BL (p = 0.051) and increased from 12mo to 24mo (p = 0.016); GlycAge decreased over the same period (p = 0.027). GlycAge was positively associated with TNF-α (p = 0.030) and ICAM-1 (p = 0.017). Between BL and 24mo, plasma high-branched glycans declined (p = 0.013), bisecting GlcNAcs increased in both plasma (p < 0.001) and IgG (p = 0.01), complement C3 protein (p < 0.001), C3-Man9 (p < 0.001), and C3-Man9Glc1C3 (p = 0.046) were reduced. The absence of a control group warrants cautious interpretation.

Borna Rapčan, M. Song, A. Frkatović-Hodžić, T. Pribić, Jakov Vuk, A. Beletić, Maja Hanić, Julija Jurić, Petra Tominac et al.

Ageing is a complex biological process with variations among individuals, leading to the development of ageing clocks to estimate biological age. Glycans, particularly in immunoglobulin G (IgG), have emerged as potential biomarkers of ageing, with changes in glycosylation patterns correlating with chronological age. For precision analysis, three different plasma pools were analysed over 26 days in tetraplicates, 312 samples in total. In short-term variability analysis, two cohorts were analysed: AstraZeneca MFO cohort of 26 healthy individuals (median age 20) and a cohort of 70 premenopausal Chinese women (median age 22.5) cohort monitored over 3 months. Long-term variability analysis involved two adult men aged 47 and 57, monitored for 5 and 10 years, respectively. Samples were collected every 3 months and 3 weeks, respectively. IgG N-glycan analysis followed a standardized approach by isolating IgG, its subsequent denaturation and deglycosylation followed by glycan cleanup and labelling. Capillary gel electrophoresis with laser-induced fluorescence (CGE-LIF) and ultra-performance liquid chromatography analyses were employed for glycan profiling. Statistical analysis involved normalization, batch correction, and linear mixed models to assess time effects on derived glycan traits. The intermediate precision results consistently exhibited very low coefficient of variation values across all three test samples. This consistent pattern underscores the high level of precision inherent in the CGE method for analysing the glycan clock of ageing. The AstraZeneca MFO cohort did not show any statistically significant trends, whereas the menstrual cycle cohort exhibited statistically significant trends in digalactosylated (G2), agalactosylated (G0) and fucosylation (F). These trends were attributed to the effects of the menstrual cycle. Long-term stability analysis identified enduring age-related trends in both subjects, showing a positive time effect in G0 and bisected N-acetylglucosamine, as well as a negative time effect in G2 and sialylation, aligning with earlier findings. Time effects measured for monogalactosylation, and F remained substantially lower than ones observed for other traits. The study found that IgG N-glycome analysis using CGE-LIF exhibited remarkably high intermediate precision. Moreover, the study highlights the short- and long-term stability of IgG glycome composition, coupled with a notable capacity to adapt and respond to physiological changes and environmental influences such as hormonal changes, disease, and interventions. The discoveries from this study propel personalized medicine forward by deepening our understanding of how IgG glycome relates to age-related health concerns. This study underscores the reliability of glycans as a biomarker for tracking age-related changes and individual health paths. Supplementary Information The online version contains supplementary material available at 10.1007/s11357-024-01239-4.

Nina Šimunić-Briški, Vedran Dukarić, Mateja Očić, Tomislav Madžar, Martina Vinicki, A. Frkatović-Hodžić, Damir Knjaz, G. Lauc

Physical inactivity and obesity are growing concerns, negatively impacting the general population. Moderate physical activity is known to have a beneficial anti-inflammatory effect. N-glycosylation of immunoglobulin G (IgG) reflects changes in the inflammatory potential of IgG. In this study, GlycanAge index of biological age (GlycanAge), one of the first commercially used biomarkers of aging, was employed to assess effects of exercise intensity in three different groups of athletes: professional competing athletes, regularly moderate active individuals and newly involved recreational individuals, compared to the group of inactive individuals. GlycanAge was significantly lower in the active group compared to the inactive group (β = -7.437, p.adj = 7.85E-03), and nominally significant and increased in professional athletes compared to the active group (β = 7.546, p = 3.20E-02). Competing female athletes had significantly higher GlycanAge comparing to active females exercising moderately (β = 20.206, p.adj = 2.71E-02), while the latter had significantly lower GlycanAge when compared with the inactive counterparts (β = -9.762, p.adj = 4.68E-02). Regular, life-long moderate exercise has an anti-inflammatory effect in both female and male population, demonstrated by lower GlycanAge index, and it has great potential to mitigate growing issues related to obesity and a sedentary lifestyle, which are relentlessly increasing world-wide. Supplementary Information The online version contains supplementary material available at 10.1007/s10719-023-10144-5.

Martina Vinicki, T. Pribić, F. Vučković, A. Frkatović-Hodžić, Isaac J. Plaza-Andrades, F. Tinahones, Joseph Raffaele, J. C. Fernández-García, G. Lauc

With aging, there is a correlation between a decline in the body's ability to maintain regular functioning and greater susceptibility to age-related diseases. Therapeutic interventions targeting the underlying biological changes of aging hold promise for preventing or delaying multiple age-related diseases. Metformin, a drug commonly used for diabetes treatment, has emerged as a potential gerotherapeutic agent due to its established safety record and preclinical and clinical data on its anti-aging effects. Glycosylation, one of the most common and complex co- and post-translational protein modifications, plays a crucial role in regulating protein function and has been linked to aging and various diseases. Changes in IgG glycosylation patterns have been observed with age, and these alterations may serve as valuable biomarkers for disease predisposition, diagnosis, treatment monitoring, and overall health assessment. In this study, we analyzed the IgG glycosylation patterns of individuals under treatment with metformin, testosterone, metformin plus testosterone and placebo, and investigated the longitudinal changes in glycosylation over time. We observed statistically significant differences in the IgG glycome composition between participants on testosterone therapy and placebo, with decreased agalactosylation and increased galactosylation and sialylation. However, metformin therapy did not result in statistically significant changes in glycosylation patterns. These findings contribute to our understanding of the impact of therapeutic interventions on IgG glycosylation and confirm the value of IgG glycosylation as a significant biomarker, capable of assessing biological age using the GlycanAge index and providing insight into overall health compared to chronological age.

P. Louca, Tamara Štambuk, A. Frkatović-Hodžić, A. Nogal, M. Mangino, Sarah E. Berry, Helena Deriš, G. Hadjigeorgiou, J. Wolf et al.

Background A dysregulated postprandial metabolic response is a risk factor for chronic diseases, including type 2 diabetes mellitus (T2DM). The plasma protein N-glycome is implicated in both lipid metabolism and T2DM risk. Hence, we first investigate the relationship between the N-glycome and postprandial metabolism and then explore the mediatory role of the plasma N-glycome in the relationship between postprandial lipaemia and T2DM. Methods We included 995 individuals from the ZOE-PREDICT 1 study with plasma N-glycans measured by ultra-performance liquid chromatography at fasting and triglyceride, insulin, and glucose levels measured at fasting and following a mixed-meal challenge. Linear mixed models were used to investigate the associations between plasma protein N-glycosylation and metabolic response (fasting, postprandial ( C _max), or change from fasting). A mediation analysis was used to further explore the relationship of the N-glycome in the prediabetes (HbA1c = 39–47 mmol/mol (5.7–6.5%))–postprandial lipaemia association. Results We identified 36 out of 55 glycans significantly associated with postprandial triglycerides ( C _max β ranging from -0.28 for low-branched glycans to 0.30 for GP26) after adjusting for covariates and multiple testing ( p _adjusted < 0.05). N-glycome composition explained 12.6% of the variance in postprandial triglycerides not already explained by traditional risk factors. Twenty-seven glycans were also associated with postprandial glucose and 12 with postprandial insulin. Additionally, 3 of the postprandial triglyceride–associated glycans (GP9, GP11, and GP32) also correlate with prediabetes and partially mediate the relationship between prediabetes and postprandial triglycerides. Conclusions This study provides a comprehensive overview of the interconnections between plasma protein N-glycosylation and postprandial responses, demonstrating the incremental predictive benefit of N-glycans. We also suggest a considerable proportion of the effect of prediabetes on postprandial triglycerides is mediated by some plasma N-glycans.

A. Frkatović-Hodžić, Anika Mijakovac, Karlo Miškec, Arina V. Nostaeva, S. Sharapov, A. Landini, T. Haller, E. B. van den Akker, Sapna Sharma et al.

Glycans are an essential structural component of Immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation). We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Up- and downregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.

Nina Šimunić-Briški, R. Zekić, Vedran Dukarić, Mateja Očić, A. Frkatović-Hodžić, Helena Deriš, G. Lauc, Damir Knjaz

Regular exercise improves health, modulating the immune system and impacting inflammatory status. Immunoglobulin G (IgG) N-glycosylation reflects changes in inflammatory status; thus, we investigated the impact of regular exercise on overall inflammatory status by monitoring IgG N-glycosylation in a previously inactive, middle-aged, overweight and obese population (50.30 ± 9.23 years, BMI 30.57 ± 4.81). Study participants (N = 397) underwent one of three different exercise programs lasting three months with blood samples collected at baseline and at the end of intervention. After chromatographically profiling IgG N-glycans, linear mixed models with age and sex adjustment were used to investigate exercise effects on IgG glycosylation. Exercise intervention induced significant changes in IgG N-glycome composition. We observed an increase in agalactosylated, monogalctosylated, asialylated and core-fucosylated N-glycans (padj = 1.00 × 10−4, 2.41 × 10−25, 1.51 × 10−21 and 3.38 × 10−30, respectively) and a decrease in digalactosylated, mono- and di-sialylated N-glycans (padj = 4.93 × 10−12, 7.61 × 10−9 and 1.09 × 10−28, respectively). We also observed a significant increase in GP9 (glycan structure FA2[3]G1, β = 0.126, padj = 2.05 × 10−16), previously reported to have a protective cardiovascular role in women, highlighting the importance of regular exercise for cardiovascular health. Other alterations in IgG N-glycosylation reflect an increased pro-inflammatory IgG potential, expected in a previously inactive and overweight population, where metabolic remodeling is in the early stages due to exercise introduction.

A. Landini, P. Timmers, A. Frkatović-Hodžić, I. Trbojević-Akmačić, F. Vučković, T. Pribic, Regeneron Genetics Center, G. Tzoneva, A. Shuldiner et al.

It is often difficult to be certain which genes underlie the effects seen in association studies. However, variants that disrupt the protein, such as predicted loss of function (pLoF) and missense variants, provide a shortcut to identify genes with a clear biological link to the phenotype of interest. Glycosylation is one of the most common post-translationalmodifications of proteins, and an important biomarker of both disease and its progression. Here, we utilised the power of genetic isolates, gene-based aggregation tests and intermediate phenotypes to assess the effect of rare (MAF<5%) pLoF and missense variants from whole exome sequencing on the N-glycome of plasma transferrin (N=1907) and immunoglobulin G (N=4912), and their effect on diseases. We identified significant gene-based associations for transferrin glycosylation at 5 genes (p<8.06x10-8) and for IgG glycan traits at 4 genes (p<1.19x10-7). Associations in three of these genes (FUT8, MGAT3 and RFXAP) are driven by multiple rare variants simultaneously contributing to protein glycosylation. Association at ST6GAL1, with a 300-fold up-drifted variant in the Orkney Islands, was detectable by a single-point exome-wide association analysis. Glycome-associated aggregate associations are located in genes already known to have a biological link to protein glycosylation (FUT6, FUT8 for transferrin; FUT8, MGAT3 and ST6GAL1 for IgG) but also in genes which have not been previously reported (e.g. RFXAP for IgG). To assess the potential impact of rare variants associated with glycosylation on other traits, we queried public repositories of gene-based tests, discovering a potential connection between transferrin glycosylation, MSR1, galectin-3, insulin-like growth factor 1 and diabetes. However, the exact mechanism behind these connections requires further elucidation.

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više