Ransomware core capability, unauthorized encryption, demands controls that identify and block malicious cryptographic activity without disrupting legitimate use. We present a probabilistic, risk-based access control architecture that couples machine learning inference with mandatory access control to regulate encryption on Linux in real time. The system builds a specialized dataset from the native ftrace framework using the function_graph tracer, yielding high-resolution kernel-function execution traces augmented with resource and I/O counters. These traces support both a supervised classifier and interpretable rules that drive an SELinux policy via lightweight booleans, enabling context-sensitive permit/deny decisions at the moment encryption begins. Compared to approaches centered on sandboxing, hypervisor introspection, or coarse system-call telemetry, the function-level tracing we adopt provides finer behavioral granularity than syscall-only telemetry while avoiding the virtualization/VMI overhead of sandbox-based approaches. Our current user-space prototype has a non-trivial footprint under burst I/O; we quantify it and recognize that a production kernel-space solution should aim to address this. We detail dataset construction, model training and rule extraction, and the run-time integration that gates file writes for suspect encryption while preserving benign cryptographic workflows. During evaluation, the two-layer composition retains model-level detection quality while delivering rule-like responsiveness; we also quantify operational footprint and outline engineering steps to reduce CPU and memory overhead for enterprise deployment. The result is a practical path from behavioral tracing and learning to enforceable, explainable, and risk-proportionate encryption control on production Linux systems.
This paper proposes the use of the Linux kernel’s ftrace framework, particularly the function_graph tracer, to generate informative system-level data for machine learning (ML) applications. Experiments on a real-world encryption detection task demonstrate the efficacy of using the proposed features across several learning algorithms. The learner is subjected to the problem of detecting encryption activities across a large dataset of files, where function call traces and graph-based features are used. Empirical results highlight an outstanding accuracy of $99.28 \%$ on the task at hand, underscoring the efficacy of features derived from the function_graph tracer. The results were further validated using an additional experiment targeting a multi-label classification problem by identifying the running programs based on trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph-based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
The ransomware threat has loomed over our digital life since 1989. Criminals use this type of cyber attack to lock or encrypt victims' data, often coercing them to pay exorbitant amounts in ransom. The damage ransomware causes ranges from monetary losses paid for ransom at best to endangering human lives. Cryptographic ransomware, where attackers encrypt the victim's data, stands as the predominant ransomware variant. The primary characteristics of these attacks have remained the same since the first ransomware attack. For this reason, we consider this a key factor differentiating ransomware from other cyber attacks, making it vital in tackling the threat of cryptographic ransomware. This paper proposes a cyber kill chain that describes the modern crypto-ransomware attack. The survey focuses on the Encryption phase as described in our proposed cyber kill chain and its detection techniques. We identify three main methods used in detecting encryption-related activities by ransomware, namely API and System calls, I/O monitoring, and file system activities monitoring. Machine learning (ML) is a tool used in all three identified methodologies, and some of the issues within the ML domain related to this survey are also covered as part of their respective methodologies. The survey of selected proposals is conducted through the prism of those three methodologies, showcasing the importance of detecting ransomware during pre-encryption and encryption activities and the windows of opportunity to do so. We also examine commercial crypto-ransomware protection and detection offerings and show the gap between academic research and commercial applications.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više