Background: Recent findings point to the key role of cathepsin S (CTSS) in the survival of malignant cells, as well as the significance of the anti-apoptotic properties of high-density lipoprotein (HDL) that contribute to enhanced cell survival. The purpose of this study is to analyze CTSS as a potential biomarker in lymphoma. Also, in order to better understand the role of CTSS in the origin and development of lymphoma, its association with cystatin C (Cys C), lipids, and inflammatory markers was analyzed. Methods: The study included 90 subjects: 11 Hodgkin (HL) and 44 B-cell non-Hodgkin lymphoma (NHL) patients, and 35 healthy subjects. CTSS was determined using the Invitrogen ELISA kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Results: The level of CTSS was significantly higher in NHL patients than in control subjects: 12.20 (9.75-14.57) vs 9.97 (8.44-10.99), P<0.001. In NHL patients, there was a positive correlation between CTSS and the proportions of HDL3a, HDL3b, and the sum of the HDL3 subclasses (r=0.506, P<0.001; r=0.411, P=0.006, r=0.335, P=0.026, respectively). In addition, the area under the receiver operating characteristic curve (AUC curve) of CTSS was 0.766 (CI: 0.655-0.856). Conclusions CTSS is significantly elevated in patients with NHL and has the potential to be a new diagnostic biomarker. Moreover, demonstrating a correlation between CTSS levels and the proportion of anti-apoptotic HDL3a and HDL3b subclasses improves understanding of NHL, as well as contributes to the development of new therapeutic strategies for this cancer.
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Newer research points to alterations in the plasma redox status and the HDL subclass distributions in cancer. We aimed to assess the redox status and the HDL subclass distributions, lipids, and inflammatory markers in lymphoma patients in order to determine whether they were correlated with changes in FDG-PET/CT scans. At the beginning of this study, redox status, HDL subclasses, lipids, and inflammation biomarkers were determined in 58 patients with lymphoma (Hodgkin lymphoma, n=11 and non-Hodgkin lymphoma, n=47), and these same measurements were reassessed during their ensuing treatment (in 25 patients). Initially, the total oxidation status (TOS), the prooxidant–antioxidant balance (PAB), the OS index (OSI), the total protein sulfhydryl groups (SH-groups), and the advanced oxidation protein products (AOPP) were significantly higher in lymphoma patients as compared to healthy subjects, but the total antioxidant status (TAS) was significantly reduced. The PAB had a strong correlation with the CRP and interleukin-6 (rho=0.726, p<0.001; rho=0.386, p=0.003). The correlations between these parameters and the maximum standardized uptake values (SUVmax) were: PAB, rho=0.335 and p=0.010; SH-groups, rho=0.265 and p=0.044; CRP, rho=0.391 and p=0.002; HDL3b, rho=0.283 and p=0.031; HDL2b, rho= -0.294 and p=0.025; and HDL size, rho= -0.295 and p=0.024. The reductions in SUVmax between two follow-up points were associated with increases in the OSI, TOS, and SH-groups, as well as a reduction in the PAB and TAS. In conclusion, the redox parameters in patients with lymphoma were consistent with FDG-PET/CT findings. Targeting the redox status parameters and the HDL subclasses could be potential strategies in the molecular fight against lymphoma.
Simple Summary This study aimed to investigate if the coexpression of ABC transporters and survivin is associated with R-CHOP treatment response. Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in Refractory and Relapsed groups, respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 expression in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin, and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. DLBCL might have increased levels of certain molecules such as MRP1/ABCC1, survivin, and BCRP/ABCC2 that can predict resistance to R-CHOP. Abstract Background: Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. Methods: The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. Results: Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. Conclusions: DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.
Introduction: Antimicrobial resistance and the rapid spread of multiresistant bacteria represent one of the main public health problem in limited resources countries. This issue is significantly worsening since the COVID-19 pandemic due to the unreasonably increased antibiotics prescription to patients with confirmed SARS-CoV-2 infection. The aim of this study was to examine whether COVID-19 pandemic (2020, 2021) was associated with increased antibiotic consumption in inpatient and outpatient settings in the middle size urban region (Republic of Srpska/Bosnia and Herzegovina) in comparison to period before the pandemic (2019). Additionally, we aimed to determine antimicrobial resistance and the presence of multiresistant bacteria in the regional hospital (“Saint Apostol Luka” Hospital Doboj) in 2021. Methodology: The consumption of antibiotics in inpatient was calculated as Defined Daily Dose per one hundred of patient-days. The consumption of antibiotics in outpatient was calculated as Defined Daily Dose per thousand inhabitants per day. Resistance of bacteria to antibiotics is expressed as a rates and density for each observed antibiotic. The rate of resistance was calculated as a percentage in relation to the total number of isolates of individual bacteria. The density of resistance of isolated bacteria against a specific antibiotic was expressed as the number of resistant pathogens/1000 patient days. Results: Antibiotic consumption in hospital setting registered during 2019, 2020 and 2021 was as follows: carbapenems (meropenem: 0.28; 1.91; 2.33 DDD/100 patient-days, respectively), glycopeptides (vancomycin: 0.14; 1.09, 1.54 DDD/100 patient-days, respectively), cephalosporins (ceftriaxone: 6.69; 14.7; 14.0 DDD/100 patient-days, respectively) and polymyxins (colistin: 0.04; 0.25; 0.35 DDD/100 bed-days, respectively). Consumption of azithromycin increased drastically in 2020, and dropped significantly in 2021 (0.48; 5.61; 0.93 DDD/100 patient-days). In outpatient setting, an increase in the consumption of oral forms of azithromycin, levofloxacin and cefixime, as well as parenteral forms of amoxicillin-clavulanic acid, ciprofloxacin and ceftriaxone, was recorded. In 2021, antimicrobial resistance to reserve antibiotics in hospital setting was as follows: Acinetobacter baumanii to meropenem 66.0%, Klebsiella spp to cefotaxime 67.14%, Pseudomonas to meropenem 25.7%. Conclusion: Recent COVID-19 pandemic was associated with increased antibiotic consumption in inpatient and outpatient settings, with characteristic change of pattern of azithromycin consumption. Also, high levels of antimicrobial resistance to reserve antibiotics were registered in hospital setting with low prevalence of identified pathogen-directed antimicrobial prescription. Strategies toward combat antimicrobial resistance in the Doboj region are urgently needed.
BACKGROUND The pulsed electromagnetic fields (PEMFs) seem effective in increasing bone mineral density and promoting osteogenesis and bone healing. OBJECTIVE To examine the effect of two different modalities of PEMFs therapy in comparison with the recommended pharmacological treatment on experimental osteoporosis in rats. METHODS The experimental model of estrogen-deficient osteoporosis induced by ovariectomy was used in this study. The animals were exposed to PEMFs of various frequencies (40 Hz and 25 Hzk), intensities (10 mT and 36.4 μT), lengths of exposure, and the effects were compared with the standard treatment with pamidronate, vitamin D, and calcium supplementation. RESULTS The application of PEMF40Hz, significantly reduced the osteoporotic bone loss in female rats that were confirmed with biochemical, biomechanical, and histological analyses. These effects were more pronounced than in osteoporotic animals treated with pamidronate, vitamin D, and calcium supplementation. On the contrary, the exposure to PEMF25Hz did not show restorative effects but led to further progression of osteoporosis. CONCLUSION The exposure to PEMF40Hz, significantly restored osteoporosis and attenuated bone fragility in comparison to the rats exposed to PEMF25Hz or those treated with pamidronate, vitamin D, and calcium supplementation.
There are still not enough findings to elucidate how exactly alcohol use impairs cognitive abilities. Some studies have shown that there is a link between alcohol intake and vitamin D levels, but these findings are inconsistent so further research is needed. The aim of this study was to investigate the association between serum vitamin D levels and cognitive impairment in alcohol-dependent individuals. A case-control study was carried out including a total of N = 132 respondents with a medical history of alcoholism, and healthy volunteers. The Montreal Cognitive Assessment (MoCa) and Addenbrooke’s Cognitive Examination-Revised (ACE-R) screening tools were used for cognitive status assessment and serum vitamin D levels analysis (blood samples of respondents). Significant difference (p = 0.022), was found in vitamin D levels in the alcohol-dependent group with cognitive deficiency 13.7 ± 9.4 (ng/mL), alcohol-dependent group without cognitive deficiency 19.5 ± 11.2 (ng/mL) and healthy controls 19.9 ± 11.1 (ng/mL), respectively. Furthermore, vitamin D levels were significantly different across all groups based on MoCa (p = 0.016) and ACE-R (p = 0.004) scores. All three groups exhibited vitamin D deficiency. A significant correlation was found between vitamin D deficiency and cognitive impairment, but it yielded no significant difference in alcohol-dependent individuals.
Disruption of the alveolar–endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10–40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar–endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više