Logo
User Name

Dalila Ivanković

Nobel Corporation d.o.o.

Društvene mreže:

D. Ivankovic, Merima Šahinagić-Isović, Fuad Ćatović, Almir Šestan

S. Rajic, J. Kamberović, M. R. Karkalić, D. Ivankovic, B. Z. Senic

Fires are an accompanying manifestation in modern weaponry use and in case of different accidents in peacetime. The standard military uniform is a primary barrier in protection of a soldier’s body from all external influences, including the thermal ones which can cause burns. The minimum thermal resistance to the effect of burning napalm mixture (BNM) in individual uniform garment materials has been determined, and is higher at simultaneous use of more materials one over another (the so-called sandwich materials), where the best thermal protection give sandwich materials with an air interspace. The requirement for the thermal resistance of the material of the filtrating protective suit (FPS) to the effect of BNM (≥ 15 s) has been fully met. The highest thermal resistance has been demonstrated by the FPS whose inner layer is made of polyurethane foam with active carbon. A proportional dependence between the thermal resistance of FPS to the effect of BNM and water vapor permeability through this garment mean has been determined, and reversed in respect to air permeability. [Projekat Ministarstva nauke Republike Srbije, br. TR34034]

S. Rajic, D. Ivankovic, D. Ivankovic, S. Ilić, B. Z. Senic, D. Pajić

The use of ammunition primed with depleted uranium is one of the hallmarks of modern combat operations, resulting in environmental contamination by particles of depleted uranium and uranium oxide, scattered around in the form of submicron-scale aerosols. This paper examined the protective effectiveness of the Serbian military's M3 protective face mask in relation to the presence of airborne depleted uranium and its by-products. Sodium chloride in solid aerosol form was used as a test substance and adequate physical simulator of such radioactive aerosols because its granulometric (particle) size distribution met the requirements of suitability as a simulator. Determination of aerosol concentration was carried out by flame photometry method, whilst granulometric distribution was determined by an electric particles analyzer. It was established that the total internal leakage of the M3 protective mask was as much a function of the penetration of particles through the combined M3 filter as of the leaks along the fitting line of the user's face mask and the inhalation valve. In terms of its protective effect against aerosols of depleted uranium and associated oxides, the Serbian M3 protective mask was determined to be of high efficiency and physiological suitability. [Projekat Ministarstva nauke Republike Srbije, br. TR34034]

...
...
...

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više