Logo

Publikacije (25)

Nazad
L. S. J. Medina, Paula B. Paz Sepúlveda, V. Ramallo, C. Sala, Julieta Beltramo, Marisol Schwab, J. Motti, M. R. Santos et al.

Abstract The most commonly farmed fish species in Bosnia and Herzegovina’s aquaculture are from the family Salmonidae, including brook trout Salvelinus fontinalis which is reared both for consumption and stocking purposes. A number of farmers complained about the elevated frequency of anatomical deformities in the smolts and fingerlings of brook trout, decreasing their fitness rate and causing significant financial loss. Since it has been shown that occurrence of deformities is correlated with the low genetic diversity and high inbreeding, this study aimed to assess intra- and interpopulation diversity of Salvelinus fontinalis from different freshwater fish farms in Bosnia and Herzegovina by observing variation in mitochondrial and nuclear genome. Total of 109 samples of brook trout from three hatcheries located at the Neretva River were analyzed for the mitochondrial control region and seven nuclear microsatellite loci. Both PCR-RFLP and sequencing revealed only one haplotype of the control region in all investigated trout. Overall, a low number of genotypes was evident across all the observed loci. Values of genetic diversity and polymorphic information content followed the increase in the number of alleles per locus. In general, values of inbreeding coefficient were generally very high, while the genetic diversity and observed heterozygosity had low rates. The results of our study are congruent with the findings of previous studies in which developmental deformities were concomitant with the low genetic diversity and inbreeding depression. It is, therefore, strongly advised to regularly supplement the broodstock with new, unrelated individuals, as it is of vital importance for sustaining a satisfying level of genetic diversity and preventing inbreeding depression. Additionally, maintaining good management practices regarding the fluctuation of water temperature, exposure to pollution, nutrition, etc., will further contribute to the prevention of this detrimental condition.

A. Pilav, N. Pojskić, Abdurahim Kalajdžić, A. Ahatović, M. Dzehverovic, J. Cakar

Abstract Background: Bosnia and Herzegovina is a multinational and multireligious country, located in the western part of the Balkan Peninsula. Migrations through history were a key factor in the genetic identity of the Bosnian–Herzegovinian population. Aim: To analyse genetic polymorphisms of 22 autosomal short tandem repeat (STR) loci in the population of Bosnia and Herzegovina and to compare STR allele frequencies for STR loci with the reference data for European populations. Subjects and methods: The study was conducted among 600 unrelated individuals from all regions of Bosnia and Herzegovina. Genotyping was performed using the PowerPlex® Fusion amplification kit. Allele frequencies and statistical parameters were calculated, as well as the genetic distance among analysed populations through the construction of a neighbor-joining dendrogram. Results: STR loci included in the PowerPlex® Fusion amplification kit showed high discriminatory power indicating their reliability for human identification and paternity testing. The neighbor-joining dendrogram based on the results of genetic distance analysis showed that the Bosnian and Herzegovinian population has the greatest genetic distance from Turkish and Hungarian populations and greatest similarity with Croatian, Slovenian, and Serbian populations. Conclusion: The results of this study strongly support the application of 22 autosomal genetic markers for paternity testing and personal identity testing and are in agreement with most previous human studies in the investigated human populations.

Objectives: The global burden of the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the corona virus disease-19 (COVID-19) is enormous No definitive treatment and prophylactic guidelines for COVID-19 currently exist except for physical distancing and aerial barriers between individuals This work explored the natural compound-binding efficiency of SARS-CoV-2 proteins essential for host cell interaction and infection Methods: The binding activity of artemisinin to SARS-CoV-2 spike glycoprotein (Protein Data Bank (PDB) ID: 6VYB), SARS-CoV-2 main protease (3C-like main protease (3CLpro);PDB ID: 6Y84) and SARS-CoV-2 papain-like protease (PLpro;PDB ID: 6W9C), were tested using in silico methods Moreover, chloroquine and hesperidin were used as the positive control of binding affinity and proven therapeutic effect, respectively Results: The highest affinities for binding to all tested SARS-CoV-2 proteins are observed for hesperidin (-5 8,-10 0, and -8 1 kcal/mol), then for artemisinin (-4 8,-8 3, and -6 0 kcal/mol), and the lowest for chloroquine (-4 1,-8 2, and -4 8 kcal/mol) Artemisinin, hesperidin, and chloroquine had similar positioning toward targeted proteins at specific sites when these interactions were visualized Conclusion: This study shows that artemisinin has the potential to bind and inhibit the SARS-CoV-2 spike protein, the 3CLpro main protease, and PLpro proteinase similar to hesperidin and chloroquine that have been proven as antivirals in previous preclinical and clinical studies

Berina Zametica, Sonja Mačar, Abdurahim Kalajdžić, A. Pilav, M. Dzehverovic, J. Cakar

Mutation analysis in forensic genetics and occurrence of mutations at short-tandem repeat (STR) loci, are very important in paternity testing and precise elucidation of obtained genetic profiles. To determine these locus-specific mutations in Bosnian-Herzegovinian population and their rate, 15 or 22 autosomal loci were typed using PowerPlex 16 and PowerPlex Fusion systems. In total, 1253 individuals within 583 parenthood testing cases were profiled at the Institute for Genetic Engineering and Biotechnology, University of Sarajevo during the period from 2009-2018. Out of total cases, in 13 cases 14 mutations were discovered at 11 loci. Among all tested DNA profiles two mutations occurred at D8S1179, D18S51 and FGA loci each, and one mutation at PENTA D, D3S1358, CSF1P0, D21S11, D5S818, vWA, D16S539, PENTA E. Mutation rates were calculated for 11 loci and were in consistency with mutation rates reported for correspondent locus. In our study, one mutation at locus PENTA D derives from maternal source. Also in one trio paternity case two single-step mutations at loci D16S539 and D18S51 were observed. Our results confirmed mutation analysis is important in paternity testing and therefore much attention should be directed at their analysis

Cris E. Hughes, Mary P Rogers, A. Owings, Barbara Petzelt, Joycelynn Mitchell, Harold Harry, Theresa Williams, Dena Goldberg et al.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više