Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.
Collagen is a versatile structural molecule in nature and is used as a building block in many highly organized tissues, such as bone, skin, and cornea. The functionality and performance of these tissues are controlled by their hierarchical organization ranging from the molecular up to macroscopic length scales. In the present study, polarized Raman microspectroscopic and imaging analyses were used to elucidate collagen fibril orientation at various levels of structure in native rat tail tendon under mechanical load. In situ humidity-controlled uniaxial tensile tests have been performed concurrently with Raman confocal microscopy to evaluate strain-induced chemical and structural changes of collagen in tendon. The methodology is based on the sensitivity of specific Raman scattering bands (associated with distinct molecular vibrations, such as the amide I) to the orientation and the polarization direction of the incident laser light. Our results, based on the changing intensity of Raman lines as a function of orientation and polarization, support a model where the crimp and gap regions of collagen hierarchical structure are straightened at the tissue and molecular level, respectively. However, the lack of measurable changes in Raman peak positions throughout the whole range of strains investigated indicates that no significant changes of the collagen backbone occurs with tensing and suggests that deformation is rather redistributed through other levels of the hierarchical structure.
We present the results of using Raman molecular imaging and atomic force microscopy (AFM) investigation of the composition, stability, and photodegradation of polyelectrolyte multilayer microcapsules and coated microparticles containing copper–phthalocyanine and iron–phthalocyanine. The influence of laser light on degradation of these phthalocyanine dyes embedded in the walls of polyelectrolyte multilayer capsules and shells of microparticles was studied by both AFM and Raman molecular imaging, but only the latter technique gave information on dynamics of photodegradation. Raman peak assignment was performed according to theoretical calculations. The degradation rate of phthalocyanine dyes is estimated from Raman signal measurements and a model is proposed to account for the degradation rate. Practical applications of our approach are outlined. Copyright © 2011 John Wiley & Sons, Ltd.
Transition metals incorporated into polymers lead to unusual or improved physical properties that significantly differ from those of purely organic polymers. A simple and practicable incorporation of diverse transition metals into any available polymer would make an important contribution to overcome some of the synthetic difficulties of metal‐polymer hybrid materials. Here, it is demonstrated that atomic layer deposition (ALD) can be a promising means to resolve some of those difficulties. It is found that even polytetrafluoroethylene (PTFE) with its great physical and chemical stability can be easily transformed into a transition metal–PTFE hybrid material simply by applying a metal‐oxide ALD process to PTFE. Upon metal incorporation into the PTFE, the molecular structure as well as mechanical properties (tensile behavior) of PTFE were observed to significantly change. For a better understanding of the changes to the material, experimental investigations using Raman spectroscopy, attenuated‐total‐reflection Fourier‐transform infrared spectroscopy, wide‐angle X‐ray diffraction, and energy‐dispersive X‐ray analysis were performed. In addition, with density functional theory calculations, potential bonding states of the incorporated metal into PTFE were modeled and predicted. The ALD‐based vapor‐phase approach for metal incorporation into a polymer could bring about rapid progress in the research area of metal–polymer hybrid materials.
Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.
Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible.
Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core-shell structure. UV-vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles.
Nanosilver is increasingly used in optics, medicine and analytical chemistry. We recently reported on the synthesis and properties of novel peptide-coated chiral nanosilver [1] using a small hexapeptide based on the amino acids CKK. In a continuation of our previous work, we use the peptides to catalyse TEOS hydrolysis in order to form a dense silica layer shell around a single nanoparticle, preventing chemical etching, allowing their inclusion in other inorganics, and making them biocompatible. Because of mild reaction conditions, the peptide integrity is ensured, as the chiral information which is contained in the nanoparticle. Moreover, these novel core-shell structures remain well-dispersed and are biocompatible. The possibility of further processing (creation of metamaterials etc.) is also in the focus of our interest.
The mussel has evolved a very interesting and efficient way of attaching to hard substrata in wave‐swept rocky seashores. This is enabled by a bundle of fine protein based threads called the byssus. The byssus is emerging as an effective model system for studying the requirements for underwater adhesion, wear resistance and combined hardness and extensibility (1, 2). Careful secretion of different mussel foot proteins (mfp) combined with some metal ions (Fe3+, Zn2+ etc.) allows the mussel to tune properties and optimize function of diverse parts of byssus thread (3).Here we report in‐situ high‐resolution Raman spectroscopic imaging of the byssal coating and plaque showing micron level spatial distribution of various proteins and their interaction with Fe3+ using specific Resonance Raman (RR) spectral features. 3,4‐dihydroxyphenylalanine (dopa) is a strong chelator of Fe3+ within a specific pH window (stability constant of [Fe(dopa)3]3− complex can reach values up to Kf∼1045). The charge transfer from the ...
The collection generally known as Qumran scrolls or Dead Sea Scrolls (DSS) comprises some 900 highly fragmented manuscripts (mainly written on parchment) from the Second Temple period. In the years since their manufacture the writing materials have undergone serious deterioration due to a combination of natural ageing and environmental effects. Therefore, understanding quantitatively state of conservation of such manuscripts is a challenging task and a deep knowledge of damage pathways on all hierarchical levels (from molecular up to macroscopic) results of fundamental importance for a correct protection and conservation strategy.However, the degradation of parchments is very complex and not well understood process. Parchment is a final product of processing of animal skin and consist mainly of type I collagen, which is the most abundant constituent of the dermal matrix. Collagen molecule is built by folding of three polypeptide α‐chains into a right‐handed triple helix. Every α‐chain is made by a repetit...
The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca2+ and Fe3+ induced significant reversible bridging (work of adhesion Wad ≈ 0.3 mJ/m2 to 2.2 mJ/m2) between two films at 0.35 m salinity. The strongest observed Fe3+-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe3+ and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface.
This chapter is dedicated to the development of the methodology for an accurate characterization of the support and the inks of the Dead Sea Scrolls. To that aim we use optical and electron microscopy. Micro-XRF, 3DSY- XRF, different IR methods including synchrotron radiation based reflectance spectroscopy. Simulation experiments to identify different water sources and binding agents in the carbon inks are presented. Provenance study of the Dead Sea Scrolls is based on the analysis of parchment and reconstruction of its history. For this purpose the chapter develops a methodology for an accurate characterization of this highly inhomogeneous material. Furthermore, it presents simulation experiments for the identification of the binder in carbon inks as well as the sources of water used for preparation of the liquid ink from its dry precursor. Keywords: 3DSY-XRF; Dead Sea Scrolls
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više