Logo

Publikacije (139)

Nazad
A. Yashchenok, A. Masic, D. Gorin, B. Shim, N. Kotov, P. Fratzl, H. Möhwald, A. Skirtach

Gold nanoparticle aggregate carbon nanotube functionalized colloidal particles serve as an efficient platform for probing the intracellular environment. The probes provide the means of effective localization of signal and detection of molecular fingerprints of biomolecules in living cells. The approach demonstrated in this work opens significant opportunities in molecular imaging as well as intracellular sensing and trafficking.

Anna S. Schenk, I. Zlotnikov, B. Pokroy, N. Gierlinger, A. Masic, P. Zaslansky, A. Fitch, O. Paris et al.

Biominerals are complex inorganic‐organic structures that often show excellent mechanical properties. Here a bio‐inspired study of a remarkably simple synthetic system is presented in which only one charged polymer additive (poly(sodium 4‐styrenesulfonate)) is able to induce hierarchical structuring of calcite similar to biominerals. The interaction of the negatively charged polymer with the nucleation and growth of the mineral, in particular via selective adsorption to internal and external (001) facets of the calcite lattice, implies structural features from the micrometer down to the nanometer level. The crystals exhibit a distinct rounded morphology and a controlled orientation. Moreover, the polymer molecules are occluded within the crystals with different concentrations in well‐defined regions. This leads to the induction of a mesoscale structure based on 100 nm sized mineral building blocks with granular substructure and rough surface, as well as small modifications of the crystallographic structure. Such a combination of hierarchically organized structural features has previously only been reported for biogenic calcite, which is typically grown in a complex process involving multiple organic additives. It is also shown that the organic occlusions in the calcite‐PSS hybrid crystals strongly affect the mechanical performance, as known for some biominerals.

Matthew J. Harrington, S. S. Wasko, A. Masic, F. Fischer, H. Gupta, P. Fratzl

The egg capsules of marine prosobranch gastropods, commonly know as whelks, function as a protective encapsulant for whelk embryos in wave-swept marine environments. The proteinaceous sheets comprising the wall of whelk egg capsules (WEC) exhibit long-range reversible extensibility with a hysteresis of up to 50 per cent, previously suggested to result from reversible changes in the structure of the constituent protein building blocks. Here, we further investigate the structural changes of the WEC biopolymer at various hierarchical levels using several different time-resolved in situ approaches. We find strong evidence in these biological polymers for a strain-induced reversible transition from an ordered conformational phase to a largely disordered one that leads to the characteristic reversible hysteretic behaviour, which is reminiscent of the pseudoelastic behaviour in some metallic alloys. On the basis of these results, we generate a simple numerical model incorporating a worm-like chain equation to explain the phase transition behaviour of the WEC at the molecular level.

A. Yashchenok, Dimitriya Borisova, B. Parakhonskiy, A. Masic, Bat‐El Pinchasik, Helmuth Möhwald, A. Skirtach

Nanoplasmonic biosensors based on gold nanoparticle functionalized smooth silica and porous calcium carbonate particles are presented. It is identified in this comparative study the role of porosity for adsorbing gold nanoparticles and subsequent detection of biomarkers. That is further applied in this study for detection of biomarkers. Detection of glucose – a biomarker of diabetes is studied together with that of bovine serum albumin – a very relevant bio‐molecule. Raman scattering is used for label‐free detection of molecules in the sub‐µM–mM range detection capabilities, which covers the range corresponding to healthy and diseased persons. Implications of current study for detection and identification of biomarkers are discussed.

Felix Bauer, L. Bertinetti, A. Masic, T. Scheibel

Silk fibers are well known for their mechanical properties such as strength and toughness and are lightweight, making them an interesting material for a variety of applications. Silk mechanics mainly rely on the secondary structure of the underlying proteins. Lacewing egg stalk silk proteins obtain a cross-β structure with individual β strands aligned perpendicular to the fiber axis. This structure is in contrast with that of silks of spiders or silkworms with β strands parallel to the fiber axis and to that of silks of honeybees with α helices arranged in coiled coils. On the basis of the cross-β structure the mechanical properties of egg stalks are different from those of other silks concerning extensibility, toughness, and bending stiffness. Here we show the influence of relative humidity on the mechanical behavior of lacewing egg stalks and propose a model based on secondary structure changes to explain the differences on a molecular level. At low relative humidity, the stalks rupture at an extension of 3%, whereas at high relative humidity the stalks rupture at 434%. This dramatic increase corresponds to breakage of hydrogen bonds between the β strands and a rearrangement thereof in a parallel-β structure.

Jong Seto, B. Busse, H. Gupta, C. Schäfer, S. Krauss, J. Dunlop, A. Masic, M. Kerschnitzki et al.

The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

M. Ermeydan, Étienne Cabane, A. Masic, J. Koetz, I. Burgert

Wood has an excellent mechanical performance, but wider utilization of this renewable resource as an engineering material is limited by unfavorable properties such as low dimensional stability upon moisture changes and a low durability. However, some wood species are known to produce a wood of higher quality by inserting mainly phenolic substances in the already formed cell walls--a process so-called heartwood formation. In the present study, we used the heartwood formation in black locust (Robinia pseudoacacia) as a source of bioinspiration and transferred principles of the modification in order to improve spruce wood properties (Picea abies) by a chemical treatment with commercially available flavonoids. We were able to effectively insert hydrophobic flavonoids in the cell wall after a tosylation treatment for activation. The chemical treatment reduced the water uptake of the wood cell walls and increased the dimensional stability of the bulk spruce wood. Further analysis of the chemical interaction of the flavonoid with the structural cell wall components revealed the basic principle of this bioinspired modification. Contrary to established modification treatments, which mainly address the hydroxyl groups of the carbohydrates with hydrophilic substances, the hydrophobic flavonoids are effective by a physical bulking in the cell wall most probably stabilized by π-π interactions. A biomimetic transfer of the underlying principle may lead to alternative cell wall modification procedures and improve the performance of wood as an engineering material.

D. Hwang, Matthew J. Harrington, Qingye Lu, A. Masic, Hongbo Zeng, J. Waite

Marine mussels utilize a variety of DOPA-rich proteins for purposes of underwater adhesion, as well as for creating hard and flexible surface coatings for their tough and stretchy byssal fibers. In the present study, moderately strong, yet reversible wet adhesion between the protective mussel coating protein, mcfp-1, and amorphous titania was measured with a surface force apparatus (SFA). In parallel, resonance Raman spectroscopy was employed to identify the presence of bidentate DOPA-Ti coordination bonds at the TiO(2)-protein interface, suggesting that catechol-TiO(2) complexation contributes to the observed reversible wet adhesion. These results have important implications for the design of protective coatings on TiO(2).

Shmuel Bentov, P. Zaslansky, A. Al‐Sawalmih, A. Masic, P. Fratzl, A. Sagi, A. Berman, B. Aichmayer

Kyubock Lee, W. Wagermaier, A. Masic, Krishna P. Kommareddy, Mathieu Bennet, I. Manjubala, Seung-Woo Lee, Seung-Bin Park et al.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više