We calculated the properties of a graphene monolayer on the Ir(111) surface, using the model in which the periodicities of the two structures are assumed equal, instead of the observed slight mismatch which leads to a large superperiodic unit cell. We used the density functional theory approach supplemented with the recently developed van der Waals-density function (vdW-DF) non-local correlation functional. The latter is essential for treating the vdW interaction, which is crucial for the adsorption distances and energies of the rather weakly bound graphene. When additional iridium atoms are put on top of graphene, the electronic structure of C atoms acquires the sp3 character and strong bonds with the iridium atoms are formed. We discuss the validity of the approximations used and their relevance to other graphene–metal systems.
By means of ab initio calculations and spin-polarized scanning tunneling microscopy experiments the creation of a complex energy dependent magnetic structure with a tailored spin-polarized interface is demonstrated. We show this novel effect by adsorbing organic molecules containing π(p(z)) electrons onto a magnetic surface. The hybridization of the out-of-plane p(z) atomic-type orbitals with the d states of the metal leads to the inversion of the spin polarization at the organic site due to a p(z)-d Zener exchange-type mechanism. As a key result, we demonstrate the possibility to selectively and efficiently inject spin-up and spin-down electrons from a ferromagnetic-organic interface, an effect which can be exploited in future spintronic devices.
We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.
We have performed combined angle-resolved photoemission spectroscopy (ARPES) experiments and density functional theory (DFT) calculations of the electronic structure of the Ir(111) surface, with the focus on the existence of energy band gaps. The investigation was motivated by the experimental results suggesting Ir(111) as an ideal support for the growth of weakly bonded graphene. Therefore, our prime interest was electronic structure around the symmetry point. In accordance with DFT calculations, ARPES has shown a wide energy band gap with the shape of a parallelogram centred around the point. Within the gap three surface states were identified; one just below the Fermi level and two spin–orbit split surface states at the bottom of the gap.
We study the chemisorption of CO molecule into sites of different coordination on (111) surfaces of late $4d$ and $5d$ transition metals. In an attempt to solve the well-known CO adsorption puzzle, i.e., discrepancies of adsorption site preferences with experiment which appear in the standard density functional theory calculations, we have applied the relatively new van der Waals-density functional of nonlocal correlation. In all considered cases this reduces or completely solves the site preference discrepancies and improves the value of the adsorption energy. By introducing a cutoff distance for nonlocal interaction we can pinpoint the length scale at which the correlation plays a major role in the systems considered.
We perform first-principles calculations aimed at investigating the role of a heteroatom such as N in the chemical and long-range van der Waals (vdW) interactions for a flat adsorption of several pi-conjugated molecules on the Cu(110) surface. Our study reveals that the alignment of the molecular orbitals at the adsorbate-substrate interface depends on the number of heteroatoms. As a direct consequence, the molecule-surface vdW interactions involve not only pi-like orbitals which are perpendicular to the molecular plane but also sigma-like orbitals delocalized in the molecular plane.
In this study we investigated by means of density functional theory calculations the adsorption geometry and bonding mechanism of a single thymine (C$_5$H$_6$N$_2$O$_2$) molecule on Cu(110) surface. In the most stable energetic configuration, the molecular plane is oriented perpendicular to substrate along the $[1\bar{1}0]$ direction. For this adsorption geometry, the thymine molecule interacts with the surface via a deprotonated nitrogen atom and two oxygen ones such that the bonding mechanism involves a strong hybridization between the highest occupied molecular orbitals (HOMOs) and the d-states of the substrate. In the case of a parallel adsorption geometry, the long-range van der Waals interactions play an important role on both the molecule-surface geometry and adsorption energy. Their specific role was analyzed by means of a semi-empirical and the seamless methods. In particular, for a planar configuration, the inclusion of the dispersion effects dramatically changes the character of the adsorption process from physisorption to chemisorption. Finally, we predict the real-space topography of the molecule-surface interface by simulating scanning tunneling microscopy (STM) images. From these simulations we anticipate that only certain adsorption geometries can be imaged in STM experiments.
We study the chemisorption of CO molecule into sites of different coordination on (111) surfaces of late 4d and 5d transition metals. In an attempt to solve the well-known CO adsorption puzzle we have applied the relatively new vdW-DF theory of nonlocal correlation. The application of the vdW-DF functional in all considered cases improves or completely solves the discrepancies of the adsorption site preference and improves the value of the adsorption energy. By introducing a cutoff distance for nonlocal interaction we pinpoint the length scale at which the correlation plays a major role in the systems considered.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više