Leishmania infantum causes potentially life-threatening disease in humans. To determine the extent of the animal reservoir for this pathogen in Bosnia and Herzegovina, we tested dogs and cats. We found that a large proportion of dogs were exposed to or infected with L. infantum, indicating endemicity in dogs and zoonotic risk for humans.
A century of debates on the taxonomy of members of the Metastrongyloidea Molin, 1861 led to many reclassifications. Considering the inconstant genus assignation and lack of genetic data, the main aim of this study was to support the validity of the genus Perostrongylus Schlegel, 1934, previously considered a synonym of Aelurostrongylus Cameron, 1927, based on new molecular phylogenetic data and to understand its evolutionary relationships with other metastrongyloid nematodes. Specimens of lungworm collected from European badgers in Germany, Romania and Bosnia and Herzegovina were morphologically and molecularly (rDNA, cox1) characterized. From a phylogenetic standpoint, Perostrongylus is grouped with high support together with the genera Filaroides van Beneden, 1858 and Parafilaroides Dougherty, 1946 and includes probably two species: Perostrongylus falciformis (Schlegel, 1933), a parasite of Meles meles in Europe and P. pridhami (Anderson, 1962), a parasite of Neovison vison in North America. Perostrongylus and Aelurostrongylus are assigned to different clades. Aelurostrongylus becomes a monotypic genus, with the only species Aelurostrongylus abstrusus (Railliet, 1898). In addition, we provide morphological and morphometric data for the first-stage (L1), second-stage (L2), and third-stage (L3) larvae of P. falciformis and describe their development in experimentally infected Cornu aspersum snails. The pathological and histopathological lesions in lungs of infected European badgers are also described. This is the first record of P. falciformis in Romania. Molecular phylogenetic and morphological data support the validity of the genus Perostrongylus, most probably with two species, P. falciformis in European badgers and P. pridhami in minks in North America. The two genera clearly belong to two different clades: Perostrongylus is grouped together with the genera Filaroides and Parafilaroides (both in the family Filaroididae Schulz, 1951), whereas Aelurostrongylus belongs to a clade with no sister groups.
BackgroundHepatozoon silvestris is an emerging apicomplexan parasite discovered in European wild cats from Bosnia and Herzegovina and blood samples of a domestic cat from Southern Italy in 2017. It has also been identified in Ixodes ricinus collected from a domestic cat in Wales, UK, in 2018. The clinical relevance, pathogenesis and epidemiology of this novel Hepatozoon species are not yet understood. Thus, the objective of this paper was to report and describe the first fatal case of an H. silvestris infection in a domestic cat.ResultsThe cat, which originated from Switzerland, died shortly after presenting clinical signs of lethargy, weakness and anorexia. At necropsy, no specific lesions were observed. Histopathology of the heart revealed a severe lympho-plasmacytic and histiocytic myocarditis. Mature and developing protozoal meronts morphologically compatible with Hepatozoon species were observed associated with the myocardial inflammation. No other lesions were present in any other organ evaluated, and the cat tested negative for retroviral and other immunosuppressive infectious agents. Polymerase chain reaction from the myocardium resulted in a specific amplicon of the Hepatozoon 18S rRNA gene. Sequencing and BLAST analysis revealed 100% sequence identity with H. silvestris.ConclusionsThe severity of the infection with fatal outcome in an otherwise healthy animal suggests a high virulence of H. silvestris for domestic cats. The presence of this emerging parasite in a domestic cat in Switzerland with no travel history provides further evidence for a geographical distribution throughout Europe.
Hepatozoon silvestris is an emerging apicomplexan parasite discovered in European wild cats from Bosnia and Herzegovina and blood samples of a domestic cat from Southern Italy in 2017. It has also been identified in Ixodes ricinus collected from a domestic cat in Wales, UK, in 2018. The clinical relevance, pathogenesis and epidemiology of this novel Hepatozoon species are not yet understood. Thus, the objective of this paper was to report and describe the first fatal case of an H. silvestris infection in a domestic cat. The cat, which originated from Switzerland, died shortly after presenting clinical signs of lethargy, weakness and anorexia. At necropsy, no specific lesions were observed. Histopathology of the heart revealed a severe lympho-plasmacytic and histiocytic myocarditis. Mature and developing protozoal meronts morphologically compatible with Hepatozoon species were observed associated with the myocardial inflammation. No other lesions were present in any other organ evaluated, and the cat tested negative for retroviral and other immunosuppressive infectious agents. Polymerase chain reaction from the myocardium resulted in a specific amplicon of the Hepatozoon 18S rRNA gene. Sequencing and BLAST analysis revealed 100% sequence identity with H. silvestris. The severity of the infection with fatal outcome in an otherwise healthy animal suggests a high virulence of H. silvestris for domestic cats. The presence of this emerging parasite in a domestic cat in Switzerland with no travel history provides further evidence for a geographical distribution throughout Europe.
SUMMARY Based on morphological and genetic characteristics, we describe a new species of Hepatozoon in the European wild cat (Felis silvestris silvestris), herein named Hepatozoon silvestris sp. nov. The study also provides the first data on the occurrence of H. felis in this wild felid. Hepatozoon meronts were observed in multiple cross-sections of different organs of four (44%) cats. Additionally, extracellular forms, resembling mature gamonts of Hepatozoon, were found in the spleen and myocardium of two cats. Furthermore, tissues of six animals (67%) were positive by PCR. Hepatozoon felis was identified infecting one cat (11%), whereas the 18S rRNA sequences of the remaining five cats (56%) were identical, but distinct from the sequences of H. felis. Phylogenetic analyses revealed that those sequences form a highly supported clade distant from other Hepatozoon spp. Future studies should include domestic cats from the areas where the wild cats positive for H. silvestris sp. nov. were found, in order to investigate their potential role to serve as intermediate hosts of this newly described species. Identification of its definitive host(s) and experimental transmission studies are required for elucidating the full life cycle of this parasite and the possible alternative routes of its transmission.
In the past few years the interest of the scientific community on lungworms of the genus Troglostrongylus has grown due to the increased number of unexpected cases of infections with Troglostrongylus brevior in domestic cats from Mediterranean Europe, likely due to a spill-over from wild reservoirs. Thus, there is a merit to increase our knowledge on the occurrence of this parasite in felids from European regions. The present paper describes lung lesions associated with T. brevior infection in the endangered Eurasian lynx (Lynx lynx) from Bosnia and Herzegovina. The carcass of an illegally killed 3-year-old male Eurasian lynx was presented for necropsy at the Faculty of Veterinary Medicine of Sarajevo (Bosnia and Herzegovina). Grossly, multiple, multinodular, consolidated and firm, tan to grey areas, occupying the caudal third of caudal lung lobes, were observed. At cut section, the catarrhal fluid was draining from the airways. Larvae of T. brevior were found in tracheal scraping. The histopathological examination revealed multifocal to coalescing areas, centered on bronchi and bronchioles, and expanded alveoli filled with necrotic debris, degenerated inflammatory cells, mostly neutrophils and macrophages, and multiple cross sections of parasite larvae and thin-walled morulated eggs of lungworms. The paraffin-embedded lung samples were molecularly positive for T. brevior. This paper describes the first record of T. brevior in the Eurasian lynx and the associated host lung pathology. Given its pathogenic potential and the lack of data on troglostrongylosis in lynx populations, the occurrence and impact of Troglostrongylus spp. on wildlife health as well as the role of L. lynx as reservoir of infection for other felids, should be further investigated.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više