Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10−8. Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.
Many common diseases have a complex genetic basis in which large numbers of genetic variations combine with environmental factors to determine risk. However, quantifying such polygenic effects has been challenging. In order to address these difficulties we developed a global measure of the information content of an individual's genome relative to a reference population, which may be used to assess differences in global genome structure between cases and appropriate controls. Informally this measure, which we call relative genome information (RGI), quantifies the relative “disorder” of an individual's genome. In order to test its ability to predict disease risk we used RGI to compare single‐nucleotide polymorphism genotypes from two independent samples of women with early‐onset breast cancer with three independent sets of controls. We found that RGI was significantly elevated in both sets of breast cancer cases in comparison with all three sets of controls, with disease risk rising sharply with RGI. Furthermore, these differences are not due to associations with common variants at a small number of disease‐associated loci, but rather are due to the combined associations of thousands of markers distributed throughout the genome. Our results indicate that the information content of an individual's genome may be used to measure the risk of a complex disease, and suggest that early‐onset breast cancer has a strongly polygenic component.
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.
Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04–1.10, P = 2.9 × 10−6], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03–1.07, P = 1.7 × 10−6) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07–1.12, P = 5.1 × 10−17). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05–1.10, P = 1.0 × 10−8); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04–1.07, P = 2.0 × 10−10). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.
Many common diseases have a complex genetic basis in which large numbers of genetic variations combine with environmental and lifestyle factors to determine risk. However, quantifying such polygenic effects and their relationship to disease risk has been challenging. In order to address these difficulties we developed a global measure of the information content of an individual's genome relative to a reference population, which may be used to assess differences in global genome structure between cases and appropriate controls. Informally this measure, which we call relative genome information (RGI), quantifies the relative "disorder" of an individual's genome. In order to test its ability to predict disease risk we used RGI to compare single nucleotide polymorphism genotypes from two independent samples of women with early-onset breast cancer with three independent sets of controls. We found that RGI was significantly elevated in both sets of breast cancer cases in comparison with all three sets of controls, with disease risk rising sharply with RGI (odds ratio greater than 12 for the highest percentile RGI). Furthermore, we found that these differences are not due to associations with common variants at a small number of disease-associated loci, but rather are due to the combined associations of thousands of markers distributed throughout the genome. Our results indicate that the information content of an individual's genome may be used to measure the risk of a complex disease, and suggest that early-onset breast cancer has a strongly polygenic basis.
Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02–1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2.
Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene‐environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P‐values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više