Logo

Publikacije (6)

Nazad
Dženan Lapandić, Fengze Xie, Christos K. Verginis, Soon-Jo Chung, Dimos V. Dimarogonas, Bo Wahlberg

A major challenge in autonomous flights is unknown disturbances, which can jeopardize safety and cause collisions, especially in obstacle-rich environments. This letter presents a disturbance-aware motion planning and control framework for autonomous aerial flights. The framework is composed of two key components: a disturbance-aware motion planner and a tracking controller. The motion planner consists of a predictive control scheme and an online-adapted learned disturbance model. The tracking controller, developed using contraction control methods, ensures safety bounds on the quadrotor’s behavior near obstacles with respect to the motion plan. The algorithm is tested in simulations with a quadrotor facing strong crosswind and ground-induced disturbances.

Dženan Lapandić, Christos K. Verginis, Dimos V. Dimarogonas, B. Wahlberg

We develop an algorithm to control an underactuated unmanned surface vehicle (USV) using kinodynamic motion planning with funnel control (KDF). KDF has two key components: motion planning used to generate trajectories with respect to kinodynamic constraints, and funnel control, also referred to as prescribed performance control (PPC), which enables trajectory tracking in the presence of uncertain dynamics and disturbances. We extend PPC to address the challenges posed by underactuation and control input saturation present on the USV. The proposed scheme guarantees stability under user-defined prescribed performance functions where model parameters and exogenous disturbances are unknown. Furthermore, we present an optimization problem to obtain smooth, collision-free trajectories while respecting kinodynamic constraints. We deploy the algorithm on a USV and verify its efficiency in real-world open-water experiments.

Dženan Lapandić, Christos K. Verginis, Dimos V. Dimarogonas, B. Wahlberg

We propose a control protocol based on the prescribed performance control (PPC) methodology for a quadro-tor unmanned aerial vehicle (UAV). Quadrotor systems belong to the class of underactuated systems for which the original PPC methodology cannot be directly applied. We introduce the necessary design modifications to stabilize the considered system with prescribed performance. The proposed control protocol does not use any information of dynamic model parameters or exogenous disturbances. Furthermore, the stability analysis guarantees that the tracking errors remain inside of designer-specified time-varying functions, achieving prescribed performance independent from the control gains’ selection. Finally, simulation results verify the theoretical results.

A. Censi, L. Paull, J. Tani, T. Ackermann, Oscar Beijbom, Berabi Berkai, Gianmarco, Bernasconi et al.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više