The paper presents a concept of universal motion controller. The controller merges both position and force control into a single control structure. Therefore, it gives a possibility to use the same control algorithm, both for position tracking tasks as well as for the interaction force control. The universal motion controller can be used not only to make the interaction force track its reference, but also for the limiting of the interaction force, so that safety is ensured. This makes it very useful for human-robot interaction applications.
This paper introduces a novel control approach for Doubly-Fed Induction Generator (DFIG) operating in island mode based on the cascaded control structure with disturbance estimation. The control of the DFIG is a challenging task due to its inherent nonlinearity, fast dynamics, and unpredictable disturbances acting on the system. The proposed control structure involves a nominal controller for plant and disturbance observer (DOB) in each of the inner and outer control loop. The first-order disturbance observers are designed to estimate the time-varying and unknown disturbances. With disturbance estimation, the nominal linear dynamics is obtained in both loops. This enables the same approach for designing controllers for the inner and outer loop which significantly simplifies implementation. The controllers are designed based on the demanded error dynamics and ensure stable operation of the system, while proposed DOBs estimate disturbances including external load. Finally, the effectiveness and quality of the proposed control structure were verified through numerical simulations in terms of external disturbances rejection and closed-loop tracking performance.
This paper analyses Disturbance Observer- (DOb-) based robust force control systems in the discrete-time domain. The robust force controller is implemented using velocity and acceleration measurements. A DOb is employed in an inner-loop to achieve robustness, and another DOb, viz. Reaction Force Observer (RFOb), is employed in an outer-loop to estimate interaction forces and improve the performance of force control. First, the inner-loop is analysed. It is shown that the DOb works as a phase-lead/lag compensator tuned by the nominal design parameters in the inner-loop. The phase margin of the inner-loop controller and the bandwidth of the velocity-based (i.e., conventional) DOb are constrained not only by noise-sensitivity but also by the waterbed effect. This explains why we observe unstable responses as the bandwidth of the conventional DOb increases in practice. To eliminate the design constraint due to the waterbed effect, this paper proposes an acceleration-based DOb. Then, the robust force controller is analysed. It is shown that the design parameters of the RFOb have a notable effect on the stability of the robust force control system. For example, the robust force controller has a non-minimum phase zero (zeros) when the RFOb is not properly tuned. This may cause severe stability and performance problems when conducting force control applications. By using the stability and robustness analyses, this paper proposes new design tools which enable one to synthesize a high-performance robust force control system. Simulations and experiments are presented to validate the proposed analysis and synthesis methods.
This article analyses the robust stability and performance of the disturbance observer (DOb) based digital motion control systems in the discrete-time domain. It is shown that the phase margin and the robustness of the digital motion controller can be directly adjusted by tuning the nominal plant model and the bandwidth of the observer. However, they have the upper and lower bounds due to robust stability and performance constraints as well as the noise sensitivity. The constraints on the design parameters of the DOb change when the digital motion controller is synthesized by measuring different states of a servosystem. For example, the bandwidth of the DOb is limited by the noise sensitivity and waterbed effect when the velocity and position measurements are employed in the digital robust motion controller synthesis. The robustness constraint due to the waterbed effect is removed when the DOb is implemented by acceleration measurement. The design constraints on the nominal plant model and the bandwidth of the observer are analytically derived by employing the generalized Bode integral theorem in discrete time. The proposed design constraints allow one to systematically synthesize a high-performance DOb-based digital robust motion controller. The experimental results are given to verify the proposed analysis and synthesis methods.
Compared to the traditional industrial robots that use rigid actuators, the advanced robotic systems are mobile and physically interact with unknown and dynamic environments. Therefore, they need intrinsically safe and compact actuators. In the last two decades, Series Elastic Actuators (SEAs) have been one of the most popular compliant actuators in advanced robotic applications due to their intrinsically safe and compact mechanical structures. The mobility and functionality of the advanced robotic systems are highly related to the torque-density of their actuators. For example, the amount of assistance an exoskeleton robot can provide is determined by the trade-off between the weight and output-torque, i.e., torque-density, of its actuators. As the torque outputs of the actuators are increased, the exoskeleton can expand its capacity yet it generally becomes heavier and bulkier. This has significant impact on the mobility of the advanced robotic systems. Therefore, it is essential to design light-weight actuators which can provide high-output torque. However, this still remains a big challenge in engineering. To this end, this paper proposes a high-torque density SEA for physical robot environment interaction (p-REI) applications. The continuous (peak) output-torque of the proposed compliant actuator is 147Nm (467 Nm) and its weight is less than 2.5kg. It is shown that the weight can be lessened to 1.74, but it comes at cost. The performance of the proposed compliant actuator is experimentally verified.
The paper introduces a novel control strategy for simultaneous control of position and interaction force for multi-degrees of freedom robotic systems (multi-DOF). The strategy enables both position control in free motion, and interaction force control during contact with an environment. In that sense, it differs from classical control algorithms which are switching between two different controllers, namely, position controller and force controller. The transition between position control mode and force control mode in the newly proposed structure is smooth, removing oscillations often present in the classical algorithms. This improves safety of the interaction between a controlled system and its environment.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više