1) To measure and compare the time required to perform (pTUG) and the time required to imagine (iTUG) the Timed Up & Go (TUG), and the time difference between these two tasks (i.e., TUG delta time) in older adults with cognitive decline (i.e., mild cognitive impairment (MCI) and mild-to-moderate Alzheimer disease and related disorders (ADRD)) and in cognitively healthy individuals (CHI); and 2) to examine any association between the TUG delta time and a cognitive status. Sixty-six participants (24 CHI, 23 individuals with MCI, and 19 individuals with ADRD) were recruited in this cross-sectional study. The mean and standard deviation of the pTUG and iTUG completion times and the TUG delta time, as well as age, gender, and Mini-Mental State Examination (MMSE) scores were used as outcomes. Participants were separated into three groups based on the tertilization of TUG delta time: lowest (<13.6%; n = 22; best performance), intermediate (13.6-52.2%; n = 22), and highest tertile (>52.2%; n = 22, worst performance). Fewer CHI were in the group exhibiting the highest tertile of TUG delta time compared to individuals with lowest and intermediate TUG delta times (p = 0.013). Being in the highest tertile of the TUG delta time was associated with cognitive decline in the unadjusted model (p = 0.012 for MCI, and p = 0.021 for mild-to-moderate ADRD). In the multivariate models, this association remained significant only for individuals with MCI (p = 0.019 while adjusting for age and gender; p = 0.047 while adjusting for age, gender, and MMSE score; p = 0.012 for the stepwise backward model). Our results provide the first evidence that motor imagery of gait may be used as a biomarker of MCI in older adults.
Objectives1) To measure and compare the time required to perform (pTUG) and the time required to imagine (iTUG) the Timed Up & Go (TUG), and the time difference between these two tasks (i.e., TUG delta time) in older adults with cognitive decline (i.e., mild cognitive impairment (MCI) and mild-to-moderate Alzheimer disease and related disorders (ADRD)) and in cognitively healthy individuals (CHI); and 2) to examine any association between the TUG delta time and a cognitive status.MethodsSixty-six participants (24 CHI, 23 individuals with MCI, and 19 individuals with ADRD) were recruited in this cross-sectional study. The mean and standard deviation of the pTUG and iTUG completion times and the TUG delta time, as well as age, gender, and Mini-Mental State Examination (MMSE) scores were used as outcomes. Participants were separated into three groups based on the tertilization of TUG delta time: lowest (<13.6%; n = 22; best performance), intermediate (13.6-52.2%; n = 22), and highest tertile (>52.2%; n = 22, worst performance).ResultsFewer CHI were in the group exhibiting the highest tertile of TUG delta time compared to individuals with lowest and intermediate TUG delta times (p = 0.013). Being in the highest tertile of the TUG delta time was associated with cognitive decline in the unadjusted model (p = 0.012 for MCI, and p = 0.021 for mild-to-moderate ADRD). In the multivariate models, this association remained significant only for individuals with MCI (p = 0.019 while adjusting for age and gender; p = 0.047 while adjusting for age, gender, and MMSE score; p = 0.012 for the stepwise backward model).ConclusionsOur results provide the first evidence that motor imagery of gait may be used as a biomarker of MCI in older adults.
The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from leakage of electrolytes and potential contamination. Herein, we describe a solid-state sensor based on oxidized single-walled carbon nanotubes (ox-SWNTs) functionalized with the conductive polymer poly(1-aminoanthracene) (PAA). This device had a Nernstian response over a wide pH range (2–12) and retained sensitivity over 120 days. The sensor was also attached to a passively-powered radio-frequency identification (RFID) tag which transmits pH data through simulated skin. This battery-less, reference electrode free, wirelessly transmitting sensor platform shows potential for biomedical applications as an implantable sensor, adjacent to surgical implants detecting for infection.
Cervical auscultation (CA) is an affordable, non-invasive technique used to observe sounds occurring during swallowing. CA involves swallowing characterization via stethoscopes or microphones, while accelerometers can detect other vibratory signals. While the effects of fluid viscosity on swallowing accelerometry signals is well understood, there are still open questions about these effects on swallowing sounds. Therefore, this study investigated the influence of fluids with increasing thickness on swallowing sound characteristics. We collected swallowing sounds and swallowing accelerometry signals from 56 healthy participants. Each participant completed five water swallows, five swallows of nectar-thick apple juice, and five swallows of honey-thick apple juice. These swallows were completed in neutral head and chin-tuck head positions. After pre-processing of collected signals, a number of features in time, frequency and time-frequency domains were extracted. Our numerical analysis demonstrated that significant influence of viscosity was found in most of the features. In general, features extracted from swallows in the neutral head position were affected more than swallows from the chin-tuck position. Furthermore, most of the differences were found between water and fluids with higher viscosity. Almost no significant differences were found between swallows involving nectar-thick and honey-thick apple juices. Our results also showed that thicker fluids had higher acoustic regularity and predictability as demonstrated by the information-theoretic features, and a lower frequency content as demonstrated by features in the frequency domain. According to these results, we can conclude that viscosity of fluids should be considered in future investigations involving swallowing sounds.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više