Due to the frequent climatic changes occurring worldwide, which are related to extreme meteorological parameters as well as human activities, it is obvious that these influence the flow regimes of rivers. River flow is the most important factor determining the hydrological regime of any river. This has a substantial influence on the water resources and the environment surrounding the river. Hydrotechnical structures are also dimensioned on the basis of the flow as the primary input parameter. The flow conditions have different properties and correlations with the material of the river bed. In this paper, possible dependencies and phenomena are investigated using real case studies on two rivers in Croatia - examples of river courses in alluvium and karst areas - with regard to homogeneity and isotropy analyses. For this purpose, rescaled adjusted partial sums and innovative polygon trend analysis methods will be applied on the form of a combination of methods at the same watercourses. It has been shown that the analysed time series of the flows do not exhibit homogeneity and isotropy. In addition, fluctuations and irregularities were detected in the same time series. This is key information for determining the reliability of the flow forecast.
Protecting groundwater from contamination is today’s most current environmental protection topic. What can man do in his environment to reduce the harmful impact of contamination on the environment, and thus the immediate effect on groundwater? Agricultural production is an ongoing source of groundwater contamination due to the increasingly frequent use of nitrates in fertilizers, which are washed out from the soil into groundwater due to precipitation. This paper investigates three wellfields in the north of the Republic of Croatia near the town of Varaždin. With the application of the RAPS method, the dependence of nitrate concentration in groundwater on the amount of precipitation was established. The analysis results show the connection of the observed parameters, especially in the upper aquifer layer. In this layer, the coefficients of correlation are greater than 0.80 at all locations, which shows a strong positive connection between the parameters. In the lower aquifer, the values of the coefficients of correlation are lower, and the results mostly indicate a weak correlation. The obtained results will serve as a starting point for future studies, which will aim to precisely determine the factors that influence groundwater quality in the observed area.
Concerning the media’s properties, there is always a possibility of changing groundwater flow conditions surrounding hydroelectric power plants. Causes for such events could be natural or anthropogenic, which is, in many cases, not so obvious to determine. In addition, determining a period when changes in the groundwater flow occur is a complex task. All of the above mentioned are of crucial importance due to the operational work of hydropower plants, i.e., the optimization of the inflow and outflow of the water in the turbine, regardless of the hydropower plant type. All types listed require a particular approach for solving such issues. Rescaled Adjusted Partial Sums (RAPS) is an appropriate time-series analysis method. In this specific case, observed fluctuations in the time series of the groundwater levels could lead to conclusions about possible irregularities in the shallow as well as the deep zones of the underground water. The concept was shown in this paper in the example of the hydroelectric power plant Mostar dam in Bosnia and Herzegovina. It should be noted that the defined methodology was a novel procedure for analyzing and determining the pathways of the flow of groundwater in the surrounding hydropower plant dams. In other words, such analysis could be conducted without the need for complex and expensive drilling and geophysical surveys, tracing, and all other methods.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više