Logo

Publikacije (133)

Nazad
Madhu Vellakal, A. Taha, H. El-Asrag, Qiyue, Lu, S. Koric, Shaoping Li, E. Meeks

Amrita Kataruka, Erman Guleryuz, S. Koric, W. Kriven, A. Akono

R. Barabash, Vineet Agarwal, S. Koric, I. Jasiuk, J. Tischler

The depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae. Three-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.

Mariano Vázquez, G. Houzeaux, S. Koric, Antoni Artigues, J. Aguado, Ruth Aris, Daniel Mira, H. Calmet et al.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više