Logo

Publikacije (25)

Nazad
Malik Galijašević, R. Steiger, S. Mangesius, J. Mangesius, J. Kerschbaumer, C. Freyschlag, Nadja Gruber, T. Janjic et al.

Simple Summary Magnetic resonance spectroscopy (MRS) is a useful technique in diagnosis and follow-up of gliomas. In this review we provide an insight in the use of both proton and phosphorous MRS in clinical and scientific every day practice. Abstract Preoperative grade prediction is important in diagnostics of glioma. Even more important can be follow-up after chemotherapy and radiotherapy of high grade gliomas. In this review we provide an overview of MR-spectroscopy (MRS), technical aspects, and different clinical scenarios in the diagnostics and follow-up of gliomas in pediatric and adult populations. Furthermore, we provide a recap of the current research utility and possible future strategies regarding proton- and phosphorous-MRS in glioma research.

J. Heugenhauser, Malik Galijašević, S. Mangesius, G. Goebel, J. Buchroithner, F. Erhart, J. Pichler, G. Widhalm et al.

Simple Summary In order to compare responses to different therapies among clinical trials and to differentiate between therapy-induced changes and true tumor progression, reliable response parameters are crucial. With the advent of targeted and immunologic treatments, several assessment tools have been proposed. In this post hoc analysis we compared assessment criteria according to MacDonald, RANO, mRANO, iRANO as well as Vol-RANO and Vol-mRANO in patients with newly diagnosed glioblastoma treated with standard of care (SOC) ± tumor lysate-charged autologous dendritic cells (Audencel). We found that the best correlation between progression-free survival (PFS) and overall survival (OS) was seen for mRANO and Vol-mRANO. Interestingly, iRANO was not superior for predicting OS in patients treated with Audencel. Abstract Introduction: In this post hoc analysis we compared various response-assessment criteria in newly diagnosed glioblastoma (GB) patients treated with tumor lysate-charged autologous dendritic cells (Audencel) and determined the differences in prediction of progression-free survival (PFS) and overall survival (OS). Methods: 76 patients enrolled in a multicenter phase II trial receiving standard of care (SOC, n = 40) or SOC + Audencel vaccine (n = 36) were included. MRI scans were evaluated using MacDonald, RANO, Vol-RANO, mRANO, Vol-mRANO and iRANO criteria. Tumor volumes (T1 contrast-enhancing as well as T2/FLAIR volumes) were calculated by semiautomatic segmentation. The Kruskal-Wallis-test was used to detect differences in PFS among the assessment criteria; for correlation analysis the Spearman test was used. Results: There was a significant difference in median PFS between mRANO (8.6 months) and Vol-mRANO (8.6 months) compared to MacDonald (4.0 months), RANO (4.2 months) and Vol-RANO (5.4 months). For the vaccination arm, median PFS by iRANO was 6.2 months. There was no difference in PFS between SOC and SOC + Audencel. The best correlation between PFS/OS was detected for mRANO (r = 0.65) and Vol-mRANO (r = 0.69, each p < 0.001). A total of 16/76 patients developed a pure T2/FLAIR progressing disease, and 4/36 patients treated with Audencel developed pseudoprogression. Conclusion: When comparing different response-assessment criteria in GB patients treated with dendritic cell-based immunotherapy, the best correlation between PFS and OS was observed for mRANO and Vol-mRANO. Interestingly, iRANO was not superior for predicting OS in patients treated with Audencel.

A. Grams, S. Mangesius, R. Steiger, I. Radović, A. Rietzler, Lisa-Maria Walchhofer, Malik Galijašević, J. Mangesius et al.

Brain parenchyma infiltration with glioblastoma (GB) cannot be entirely visualized by conventional magnetic resonance imaging (MRI). The aim of this study was to investigate changes in the energy and membrane metabolism measured with phosphorous MR spectroscopy (31P-MRS) in the presumably “normal-appearing” brain following chemoradiation therapy (CRT) in GB patients in comparison to healthy controls. Twenty (seven female, thirteen male) GB patients underwent a 31P-MRS scan prior to surgery (baseline) and after three months of standard CRT (follow-up examination. The regions of interest “contrast-enhancing (CE) tumor” (if present), “adjacent to the (former) tumor”, “ipsilateral distant” hemisphere, and “contralateral” hemisphere were compared, differentiating between patients with stable (SD) and progressive disease (PD). Metabolite ratios PCr/ATP, Pi/ATP, PCr/Pi, PME/PDE, PME/PCr, and PDE/ATP were investigated. In PD, energy and membrane metabolism in CE tumor areas have a tendency to “normalize” under therapy. In different “normal-appearing” brain areas of GB patients, the energy and membrane metabolism either “normalized” or were “disturbed”, in comparison to baseline or controls. Differences were also detected between patients with SD and PD. 31P-MRS might contribute as an additional imaging biomarker for outcome measurement, which remains to be investigated in a larger cohort.

Milovan Regodić, C. Freyschlag, J. Kerschbaumer, Malik Galijašević, R. Hörmann, W. Freysinger

An auditory brainstem implant (ABI) represents an alternative for patients with profound hearing loss who are constrained from receiving a cochlear implant. The positioning of the ABI electrode influences the patient’s auditory capacity and, therefore, quality of life and is challenging even with available intraoperative electrophysiological monitoring. This work aims to provide and assess the feasibility of visual-spatial assistance for ABI positioning. The pose of the forceps instrument that grasps the electrode was electromagnetically navigated and interactively projected in the eyepieces of a surgical microscope with respect to a target point. Intraoperative navigation was established with an experimental technique for automated nasopharyngeal patient registration. Two ABI procedures were completed in a human specimen head. An intraoperative usability study demonstrated lower localization error when using the proposed visual display versus standard cross-sectional views. The postoperative evaluations of the preclinical study showed that the center of the electrode was misplaced to the planned position by 1.58 mm and 3.16 mm for the left and the right ear procedure, respectively. The results indicate the potential to enhance intraoperative feedback during ABI positioning with the presented system. Further improvements consider estimating the pose of the electrode itself to allow for better orientation during placement.

Malik Galijašević, R. Steiger, I. Radović, A. Birkl-Toeglhofer, C. Birkl, L. Deeg, S. Mangesius, A. Rietzler et al.

Simple Summary Gliobastoma is one of the deadliest tumors overall, yet the most common malignant brain tumor. The new World Health Organization Classification of Brain Tumors brought changes in how we look at this type of malignancy. Now we know that glioblastoma is rather a spectrum of similar tumors, but with some distinct characteristics that include molecular footprint, response to therapy and with that overall survival, among others. We hypothesised that by employing phosphorous magnetic resonance we will be able to show differences in cellular energy metabolism in these various subtypes of glioblastoma. For example, we found indices of faster cell reproduction and tumor growth in MGMT-methylated and EGFR-amplified tumors. These tumors also could have reduced energetic state or tissue oxygenation due to the increased necrosis. Tumors with EGFR-amplification could have increased apoptotic activity regardless of their MGMT status. Our study indicated various differences in energetic metabolism in tumors with different molecular characteristics, which could potentially be important in future therapeutic strategies. Abstract The World Health Organisation’s (WHO) classification of brain tumors requires consideration of both histological appearance and molecular characteristics. Possible differences in brain energy metabolism could be important in designing future therapeutic strategies. Forty-three patients with primary, isocitrate dehydrogenase 1 (IDH1) wild type glioblastomas (GBMs) were included in this study. Pre-operative standard MRI was obtained with additional phosphorous magnetic resonance spectroscopy (31-P-MRS) imaging. Following microsurgical resection of the tumors, biopsy specimens underwent neuropathological diagnostics including standard molecular diagnosis. The spectroscopy results were correlated with epidermal growth factor (EGFR) and O6-Methylguanine-DNA methyltransferase (MGMT) status. EGFR amplified tumors had significantly lower phosphocreatine (PCr) to adenosine triphosphate (ATP)-PCr/ATP and PCr to inorganic phosphate (Pi)-PCr/Pi ratios, and higher Pi/ATP and phosphomonoesters (PME) to phosphodiesters (PDE)-PME/PDE ratio than those without the amplification. Patients with MGMT-methylated tumors had significantly higher cerebral magnesium (Mg) values and PME/PDE ratio, while their PCr/ATP and PCr/Pi ratios were lower than in patients without the methylation. In survival analysis, not-EGFR-amplified, MGMT-methylated GBMs showed the longest survival. This group had lower PCr/Pi ratio when compared to MGMT-methylated, EGFR-amplified group. PCr/Pi ratio was lower also when compared to the MGMT-unmethylated, EGFR not-amplified group, while PCr/ATP ratio was lower than all other examined groups. Differences in energy metabolism in various molecular subtypes of wild-type-GBMs could be important information in future precision medicine approach.

Malik Galijašević, R. Steiger, Milovan Regodić, M. Waibel, Patrick Sommer, A. Grams, N. Singewald, E. Gizewski

Introduction: Various functional neuroimaging studies help to better understand the changes in brain activity during meditation. The purpose of this study was to investigate how brain energy metabolism changes during focused attention meditation (FAM) state, measured by phosphorous magnetic resonance spectroscopy (31P-MRS). Methods: 31P-MRS imaging was carried out in 27 participants after 7 weeks of FAM training. Metabolite ratios and the absolute values of metabolites were assessed after meditation training in two MRI measurements, by comparing effects in a FAM state with those in a distinct focused attention awake state during a backwards counting task. Results: The results showed decreased phosphocreatine/ATP (PCr/ATP), PCr/ inorganic phosphate (Pi), and intracellular pH values in the entire brain, but especially in basal ganglia, frontal lobes, and occipital lobes, and increased Pi/ATP ratio, cerebral Mg, and Pi absolute values were found in the same areas during FAM compared to the control focused attention awake state. Conclusions: Changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state induced by meditation, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity.

Milovan Regodić, Z. Bárdosi, G. Diakov, Malik Galijašević, C. Freyschlag, W. Freysinger

Interactive image-guided surgery technologies enable accurate target localization while preserving critical nearby structures in many surgical interventions. Current state-of-the-art interfaces largely employ traditional anatomical cross-sectional views or augmented reality environments to present the actual spatial location of the surgical instrument in preoperatively acquired images. This work proposes an alternative, simple, minimalistic visual interface intended to assist during real-time surgical target localization. The estimated 3D pose of the interventional instruments and their positional uncertainty are intuitively presented in a visual interface with respect to the target point. A usability study with multidisciplinary participants evaluates the proposed interface projected in surgical microscope oculars against cross-sectional views. The latter was presented on a screen both stand-alone and combined with the proposed interface. The instruments were electromagnetically navigated in phantoms. The usability study demonstrated that the participants were able to detect invisible targets marked in phantom imagery with significant enhancements for localization accuracy and duration time. Clinically experienced users reached the targets with shorter trajectories. The stand-alone and multi-modal versions of the proposed interface outperformed cross-sectional views-only navigation in both quantitative and qualitative evaluations. The results and participants’ feedback indicate potential to accurately navigate users toward the target with less distraction and workload. An ongoing study evaluates the proposed system in a preclinical setting for auditory brainstem implantation.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više