In this paper, we analyze the impact of nonlinear high-power amplifier (HPA) on the performance of cooperative network based on orthogonal frequency division multiplexing combined with time-division multiplexing (OFDM/TDM) using minimum mean-square-error frequency-domain combining (MMSE-FDC) in a frequency-selective fading channel. We design a novel MMSE-FDC weights while taking into account the nonlinearity of HPA at source and relay. Closed-form symbol error rate and outage probability expressions are derived while approximating the residual inter-slot interference after the MMSE-FDC as a random Gaussian variable. We discuss and address the nonlinear OFDM/TDM system design issues in cooperative network using the obtained simulation and theoretical results. We show that the OFDM/TDM with MMSE-FDC can be used to reduce the impact of nonlinear HPA on overall performance of cooperative network in comparison to OFDM while providing the target quality-of-service for reduced required signal-to-noise ratio. This is because OFDM/TDM with MMSE-FDC achieves frequency diversity in addition to cooperative diversity, while reduced peak-to-average power ratio makes it more robust on nonlinear degradation due to HPA saturation in comparison to conventional OFDM.
Analog network coding (ANC) as a simple implementation of physical layer network coding based on orthogonal frequency division multiplexing (OFDM) has been proposed to increase the network capacity and reliability of bi-directional link between a pair of users. In ANC protocol, an information between a pair of users is exchanged through two orthogonal time phases (i.e., multiple-access and broadcast phases). On the other hand, the phase noise (PN) introduces phase offset and inter carrier interference (ICI) to the useful signal. Thus, in ANC scheme PN will affect the useful signal during both multiple-access and broadcast phases. In this article, we present a performance analysis of ANC scheme using OFDM in the presence of PN in frequency-selective fading channel. We derive the total composite variance of ANC scheme in the presence of PN to obtain the signal-to-interference-plus-noise ratio (SINR) expression. Then, we evaluate the system’s performance in terms of bit error rate (BER), SINR degradation, and ergodic capacity through both numerical and computer simulations. Computer simulated average BER has been consistent with the numerical results, validating the presented analysis. Our results have shown that the ANC scheme is more sensitive to the PN introduced during the broadcast phase (i.e., at destination) than during the multiple-access phase (i.e., at relay). This is because of the higher ICI to the useful signal and enhanced noise due to the imperfect self-information removal at the destination. In addition, the performance degradation of ANC scheme based on OFDM in the presence of PN is highly expressed for the PN linewidth values up to 20 Hz.
Orthogonal frequency division multiplexing (OFDM) has been adopted for several wireless network standards due to its robustness against multipath fading. Main drawback of OFDM is its high peak-to-average power ratio (PAPR) that causes a signal degradation in a peak-limiting (e.g., clipping) channel leading to a higher bit error rate (BER). At the receiver end, the effect of peak limitation can be removed to some extent to improve the system performance. In this paper, a joint iterative channel estimation/equalization and clipping noise reduction technique based on minimum mean square error (MMSE) criterion is presented. The equalization weight that minimizes the mean square error (MSE) between the signal after channel equalization and feedback signal after clipping noise reduction is derived assuming imperfect channel state information (CSI). The MSE performance of the proposed technique is theoretically evaluated. It is shown that the BER performance of OFDM with proposed technique can be significantly improved in a peak-limited and doubly-selective (i.e., time- and frequency-selective) fading channel. Copyright © 2011 John Wiley & Sons, Ltd.
Orthogonal frequency division multiplexing (OFDM) signals have a problem with a high peak-to-average power ratio (PAPR). A distortionless selected mapping (SLM) has been proposed to reduce the PAPR, but a high computational complexity prohibits its application to an OFDM system with a large number of subcarriers. Recently, we proposed OFDM combined with time division multiplexing (OFDM/TDM) using minimum mean square error frequency-domain equalization (MMSE-FDE) to improve the bit error rate (BER) performance of conventional OFDM with a lower PAPR. The PAPR problem, however, cannot be completely eliminated. In this paper, we present an SLM combined with symbol re-mapping for OFDM/TDM using MMSE-FDE. Unlike the conventional OFDM, where SLM is applied over subcarriers in the frequency domain, we exploit both time and frequency dimensions of OFDM/TDM signal to improve the performance with respect to PAPR and BER. A mathematical model for PAPR distribution of OFDM/TDM with SLM is presented to complement the computer simulation results. It is shown that proposed SLM can further reduce the PAPR without sacrificing the BER performance with the same or reduced computational complexity. Copyright © 2010 John Wiley & Sons, Ltd.
Broadcast nature of the wireless channel enables wireless communications to make use of network coding at the physical layer (PNC) to improve the network capacity. Recently, narrowband and later broadband analog network coding (ANC) were introduced as a simpler implementation of PNC. The ANC schemes require two time slots while in PNC three time slots are required for bi-directional communication between two nodes and hence ANC is more spectrum efficient. The coherent detection and self-information removal in ANC require accurate channel state information (CSI). {In this paper, we theoretically analyze the bit error rate (BER) performance with imperfect knowledge of CSI for broadband ANC using orthogonal frequency division multiplexing (OFDM), where the channel estimation error is modeled as a zero-mean complex Gaussian random variable. We investigate the BER performance for three cases: (i) the effect of imperfect self-information removal due to channel estimation (CE) error with fading tracking errors, (ii) the effect of imperfect self-information removal due to CE error without fading tracking errors}, and (iii) the ideal CE case. We discuss how, and by how much, our results obtained by theoretical analysis can be used for design of broadband ANC system with the imperfect knowledge of CSI. Our results show that imperfect channel estimation due to the noise effect has less impact on self-information removal than the imperfect channel estimation due to fading tracking errors. The tracking against fading is an important problem for accurate self-information removal as well as coherent detection and thus, the effect of channel time-selectivity is also theoretically studied. The achievable BER performance gains due to the polynomial time-domain channel interpolation are investigated using the derived close-form BER expressions and it was shown that the broadband ANC schemes with practical CE in a time- and frequency-selective channel should include a more sophisticated channel interpolation techniques since the impact of Doppler shift has prevalent effect on the achievable BER performance.
In this work the effects of impulsive noise from number of home electrical appliances in power line medium is investigated. This is an extension to a paper already published in ISPLC 2011 [1]. The analysis in this work focuses on the properties of impulse noise in frequency range of 100MHz – 200MHz and compares the effect of noise with the lower frequency bands.
Vehicular networks are a promising field in wireless networks enabling connection vehicles among themselves or between a vehicle and an infrastructure. These networks aim to offer several potential applications ranging from road safety applications and driver assistance to infotainment. However, these networks have limited coverage and capacity. Among the options that may help overcome these limitations, we can quote cooperative communications and analog network coding (ANC). The idea of this paper is to combine these two concepts in order to improve the vehicular network connectivity and capacity. The proposed solution is divided into three stages. The first stage aims at identifying the coding and relaying opportunities. The second stage uses a distributed scheme to select the Best Vehicular Relay among potential candidates when relaying is required, while the last stage performs our joint relaying and coding strategy on the received signals. In order to validate our approach, numerical analysis is performed to evaluate the performances in terms of raw Bit Error Rate (BER) and throughput. This confirmed our expectation showing that cooperative relaying achieves better performance than the direct transmission in terms of raw BER but decreases the throughput. However, by deploying analog network coding on the Best Vehicular Relay, the throughput is improved considerably at the price of a slight deterioration of the raw BER.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više