SURALP is a 29 degrees-of-freedom full-body walking humanoid robot designed and constructed at Sabanci University - Turkey. The human-sized robot is actuated by DC motors, belt and pulley systems and Harmonic Drive reduction gears. The sensory equipment consists of joint encoders, force/torque sensors, inertial measurement systems and cameras. The control hardware is based on a dSpace digital signal processor. This paper reviews the design of this robot and presents experimental walking results. A posture zeroing procedure is followed after manual zeroing of the robot joints. Controllers for landing impact reduction, early landing trajectory modification, foot-ground orientation compliance, body inclination and Zero Moment Point (ZMP) regulation, and independent joint position controllers are used in zeroing and walking. A smooth walking trajectory is employed. Experimental results indicate that the reference generation and control algorithms are successful in achieving a stable and continuous walk.
In bilateral control applications, time delays in the communication channel have destabilizing effects and cause degradations in the performance of the system. In this paper, a sliding mode observer is used in conjunction with a disturbance observer to predict states of the slave system. Predicted states are then used in control formulation. Simulation and experimental results show that the proposed method avoids instability due to time delays in bilateral operation and provides satisfactory performance.
This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction with the environment. This in turn implies that the dynamical system's reaction can be considered as a natural feedback as it carries full coupled information about the dynamical system. The idea is experimentally implemented on a dynamical system with three flexible modes, then it can be extended to the more complicated structures with infinite flexible modes.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više