Assessment of skeletal maturity is typical strategy applied in clinical pediatrics today. The main goal of a Bone Age Assessment (BAA) is to determine endocrinology and growth disorders by comparing the bone and chronological age of the patient. Several methods are developed to determine skeletal maturity, but Greulich-Pyle and Tanner-Whitehouse represent the two most common methods that involve left hand and wrist radiographs. However, these methods are extremely time-dependent and rely on an experienced radiologist, who further evaluates bone age using hand atlas as a reference. In this paper, VGG-16 and ResNet50 are two Deep Convolutional Neural Network (DCNN) models applied with ImageNet pre-trained weights in order to estimate correct bone age and achieve high accuracy of gender prediction using public RSNA dataset that includes 12611 radiographs. The experimental results show month discrepancy of approximately eight months and 82% accuracy during the process of gender classification.
Staunton, CA, Stanger, JJ, Wundersitz, DW, Gordon, BA, Custovic, E, and Kingsley, MI. Criterion validity of a MARG sensor to assess countermovement jump performance in elite basketballers. J Strength Cond Res XX(X): 000-000, 2018-This study assessed the criterion validity of a magnetic, angular rate, and gravity (MARG) sensor to measure countermovement jump (CMJ) performance metrics, including CMJ kinetics before take-off, in elite basketballers. Fifty-four basketballers performed 2 CMJs on a force platform with data simultaneously recorded by a MARG sensor located centrally on the player's back. Vertical accelerations recorded from the MARG sensor were expressed relative to the direction of gravity. Jumps were analyzed by a blinded assessor and the best jump according to the force platform was used for comparison. Pearson correlation coefficients (r) and mean bias with 95% ratio limits of agreement (95% RLOA) were calculated between the MARG sensor and the force platform for jumps performed with correct technique (n = 44). The mean bias for all CMJ metrics was less than 3%. Ninety-five percent RLOA between MARG- and force platform-derived flight time and jump height were 1 ± 7% and 1 ± 15%, respectively. For CMJ performance metrics before takeoff, impulse displayed less random error (95% RLOA: 1 ± 13%) when compared with mean concentric power and time to maximum force displayed (95% RLOA: 0 ± 29% and 1 ± 34%, respectively). Correlations between MARG and force platform were significant for all CMJ metrics and ranged from large for jump height (r = 0.65) to nearly perfect for mean concentric power (r = 0.95). Strong relationships, low mean bias, and low random error between MARG and force platform suggest that MARG sensors can provide a practical and inexpensive tool to measure impulse and flight time-derived CMJ performance metrics.
Accelerometry-derived exercise dose (intensity × duration) was assessed throughout a competitive basketball season. Nine elite basketballers wore accelerometers during a Yo-Yo intermittent recovery test (Yo-Yo-IR1) and during three two-week blocks of training that represented phases of the season defined as easy, medium, and hard based on difficulty of match schedule. Exercise dose was determined using accumulated impulse (accelerometry-derived average net force × duration). Relative exercise intensity was quantified using linear relationships between average net force and oxygen consumption during the Yo-Yo-IR1. Time spent in different intensity zones was computed. Influences of match schedule difficulty and playing position were evaluated. Exercise dose reduced for recovery and pre-match tapering sessions during the medium match schedule. Exercise dose did not vary during the hard match schedule. Exercise dose was not different between playing positions. The majority of activity during training was spent performing sedentary behaviour or very light intensity activity (64.3 ± 6.1%). Front-court players performed a greater proportion of very light intensity activity (mean difference: 6.8 ± 2.8%), whereas back-court players performed more supramaximal intensity activity (mean difference: 4.5 ± 1.0%). No positional differences existed in the proportion of time in all other intensity zones. Objective evaluation of exercise dose might allow coaches to better prescribe and monitor the demands of basketball training.
Fetal movement counts have long been used as a measure of fetal well-being but with advancing technology, such counts have been supplanted as the primary measure. Despite the new technologies used in standard clinical practice, the stillbirth rate has not reduced significantly worldwide. Each method of assessing fetal movement has limitations with different methods performing better in different situations. No one method is universally superior. This paper aims to introduce the reader to the broad range of assessment methods, both potential and actual, used to determine fetal movement. These assessment methods are assembled into a taxonomy: maternal involvement, clinician involvement, technology-assisted, and automated technology. A brief historical and technological overview and the expected measurements of each assessment method are described. All reviewed methods have value, but actography appears to offer the most potential by complementing existing approaches. Further research is required to evaluate the suitability of fetal movement assessment and the response to it.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više