The requirements for the efficient replacement of fossil fuel, combined with the growing energy crisis, places focus on hydrogen production. Efficient and cost-effective electrocatalysts are needed for H2 production, and novel strategies for their discovery must be developed. Here, we utilized Kinetic Monte Carlo (KMC) simulations to demonstrate that hydrogen evolution reaction (HER) can be boosted via hydrogen spillover to the support when the catalyst surface is largely covered by adsorbed hydrogen under operating conditions. Based on the insights from KMC, we synthesized a series of reduced graphene-oxide-supported catalysts and compared their activities towards HER in alkaline media with that of corresponding pure metals. For Ag, Au, and Zn, the support effect is negative, but for Pt, Pd, Fe, Co, and Ni, the presence of the support enhances HER activity. The HER volcano, constructed using calculated hydrogen binding energies and measured HER activities, shows a positive shift of the strong binding branch. This work demonstrates the possibilities of metal–support interface engineering for producing effective HER catalysts and provides general guidelines for choosing novel catalyst–support combinations for electrocatalytic hydrogen production.
The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal. Our study reveals that under the same contact current experimental conditions, the electrodeposition of Cu and Ni on rGO follows significantly different deposition modes, resulting in the formation of three-dimensional (3D) and free-standing metallic foils, respectively. Considering that Ni adsorption energy is larger than Ni cohesive energy, it is expected that the adhesion of Ni on rGO@CFRP is enhanced compared to Cu. In contrast, the adhesion of deposited Ni is reduced, suggesting diffusion of H+ between rGO and CFRP, which promotes the hydrogen evolution reaction (HER) and results in the formation of free-standing Ni foils. We ascribe this phenomenon to the unique properties of rGO and the nature of Cu and Ni deposition from electrolytic baths. In the latter, the high adsorption energy of Ni on defective rGO along with HER is the key factor for the formation of the porous layer and free-standing foils.
This paper shows the use of membrane filters in adsorption of solution of tetracycline hydrochloride on graphene materials. The adsorption process was monitored at different wavelengths, different pH values at certain time intervals. The absorbances of the solutions were measured by UV-Vis spectrophotometry at two wavelengths (275 nm and 356 nm), and three pH values (pH 4, pH 7 and pH 10) every 90 minutes for 6 hours of monitoring, with constant stirring in an ultrasonic bath. The results showed decrease in absorbance at both wavelength and in all three pH values which proved the adsorption of tetracycline hydrochloride on GO and rGO. The largest decrease in absorbance was 98.1%. The most suitable pH value for adsorption was pH 4. This paper used a unique approach to filtration through membrane filters, which in the future could lead to the development of membrane filters based on graphene materials.
Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually shaped current electrochemistry because it was in focus of active research for so many years (and it still is). The number of catalysts investigated for HER is immense, and it is not possible to overview them all. In fact, it seems that the complexity of the field overcomes the complexity of HER. The aim of this review is to point out some of the latest developments in HER catalysis, current directions and some of the missing links between a single crystal, nanosized supported catalysts and recently emerging, single-atom catalysts for HER.
Graphene-based materials and their role in electrocatalysis related to hydrogen production have been intensively investigated by many authors, often justified through a low price of such materials. In this study we used single-step electrodeposition/graphene oxide reduction route to prepare Ni@reduced-graphene-oxide composites for electrochemical hydrogen evolution reaction (HER). As the precursors for reduced graphene oxide, two different home-made graphene oxides were used. When compared to pure electrodeposited Ni, composite catalysts show improved catalytic activity which depends on Ni electrodeposition time in a volcano-type fashion. Using electrochemically prepared graphene oxide, HER overvoltage needed to reach 10 mA cm −2 was reduced to only −97 mV, showing the improvement by roughly 200 mV when compared to pure electrodeposited Ni. It was concluded that structural disorder and surface oxidation of graphene-based materials are the key properties for reaching high HER activities of such prepared catalysts. Based on this observation, it was discussed whether it is economically justified to use high quality graphene oxide for the preparation of HER catalysts, as the price (production and commercial) of this material can be extremely high, often exceeding the price of platinum.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više