Logo

Publikacije (44)

Nazad
Nikola Pavlović, Petar Todorović, Mirko Maglica, Marko Kumrić, Katarina Vukojević, Z. Pogorelić, J. Božić

The heart’s relentless contractile activity depends critically on mitochondrial function to meet its extraordinary bioenergetic demands. Mitochondria, through oxidative phosphorylation, not only supply ATP but also regulate metabolism, calcium homeostasis, and apoptotic signaling, ensuring cardiomyocyte viability and cardiac function. Mitochondrial dysfunction is a hallmark of cardiomyopathies and heart failure, characterized by impaired oxidative phosphorylation, excessive production of reactive oxygen species (ROS), dysregulated calcium handling, and disturbances in mitochondrial dynamics and mitophagy. These defects culminate in energetic insufficiency, cellular injury, and cardiomyocyte death, driving heart disease progression. Diverse cardiomyopathy phenotypes exhibit distinct mitochondrial pathologies, from acute ischemia-induced mitochondrial collapse to chronic remodeling seen in dilated, hypertrophic, restrictive, and primary mitochondrial cardiomyopathies. Mitochondria also orchestrate cell death and inflammatory pathways that worsen cardiac dysfunction. Therapeutic strategies targeting mitochondrial dysfunction, including antioxidants, modulators of mitochondrial biogenesis, metabolic therapies, and innovative approaches such as mitochondrial transplantation, show promise but face challenges in clinical translation. Advances in biomarker discovery and personalized medicine approaches hold promise for optimizing mitochondrial-targeted therapies. Unlike previous reviews that examined these pathways or interventions individually, this work summarizes insights into mechanisms with emerging therapeutic strategies, such as SGLT2 inhibition in HFpEF, NAD+ repletion, mitochondrial transplantation, and biomarker-driven precision medicine, into a unified synthesis. This framework underscores the novel contribution of linking basic mitochondrial biology to translational and clinical opportunities in cardiomyopathy and heart failure. This review synthesizes the current understanding of mitochondrial biology in cardiac health and disease, delineates the molecular mechanisms underpinning mitochondrial dysfunction in cardiomyopathy and heart failure, and explores emerging therapeutic avenues aimed at restoring mitochondrial integrity and improving clinical outcomes in cardiac patients.

Petar Todorović, Ivana Jurić, Nela Kelam, Matko Rošin, Davor Čarić, Danica Boban, Andrea Kopilaš, Katarina Vukojević

Background/Objectives: Hip osteoarthritis (HOA) is a progressive joint disease characterized by cartilage loss, subchondral bone changes, and synovial inflammation. While tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and transforming growth factor-beta 1 (TGF-β1) are recognized as key mediators of joint pathology, their compartment-specific expression in the human hip synovium remains insufficiently characterized. Therefore, we aimed to investigate their localization and expression in the intimal and subintimal compartments of synovial tissue in patients with HOA compared to controls (CTRL). Methods: Synovial membrane samples were obtained from 19 patients with primary HOA undergoing total hip arthroplasty and 10 CTRL subjects undergoing arthroplasty for acute femoral neck fracture without HOA. Specimens were processed for hematoxylin and eosin (H&E) and immunofluorescence staining. Expression of TNFR1, IL-6, and TGF-β1 was quantified in the intima and subintima using ImageJ analysis. Group differences were assessed using two-way Analysis of variance (ANOVA) with Tukey’s test when assumptions were met; for heteroscedastic outcomes we applied Brown–Forsythe ANOVA with Dunnett’s T3 multiple comparisons. Results: Histological analysis confirmed synovitis in HOA samples, with intimal hyperplasia and mononuclear infiltration. IL-6 was significantly upregulated in the intima of HOA synovium compared with CTRLs, while subintimal expression remained unchanged. In contrast, TGF-β1 expression was reduced in the HOA intima, eliminating the normal intima–subintima gradient. For TNFR1, the within-HOA contrast (int > sub) was significant, whereas the intimal HOA vs. CTRL comparison showed a non-significant trend. Transcriptomic analysis supported IL-6 upregulation, while TNFR1 and TGF-β1 did not reach statistical significance at the mRNA level in an orthogonal, non-hip (knee-predominant) dataset. Conclusions: These findings demonstrate compartment-specific cytokine dysregulation in HOA, with increased intimal TNFR1 and IL-6 alongside reduced intimal TGF-β1. The synovial lining emerges as a dominant site of inflammatory signaling, underscoring its importance in disease progression.

Petar Todorović, Nikola Pavlović, Mirko Maglica, Patricija Bajt, Nela Kelam, Fila Raguž, Katarina Vukojević

The kidney’s intricate physiology relies on finely tuned gene regulatory networks that coordinate cellular responses to metabolic, inflammatory, and fibrotic stress. Beyond protein-coding transcripts, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as pivotal regulators of renal biology. By modulating transcriptional, post-transcriptional, and epigenetic pathways, ncRNAs govern podocyte integrity, tubular adaptation, intercellular signaling, and immune activation. Dysregulation of these networks is now recognized as a hallmark of major kidney diseases, ranging from diabetic nephropathy and acute kidney injury to chronic kidney disease, glomerulopathies, and polycystic kidney disease. Mechanistic studies have revealed how pathogenic ncRNAs drive apoptosis, inflammation, fibrosis, and cystic remodeling, while protective ncRNAs mitigate these processes, highlighting their dual roles as both disease mediators and therapeutic targets. The exceptional stability of ncRNAs in urine, plasma, and exosomes further positions them as minimally invasive biomarkers with diagnostic and prognostic value. Translational advances include anti-miR and mimic-based therapies (e.g., lademirsen targeting miR-21, miR-29 mimics, anti-miR-17 oligonucleotides), alongside lncRNA silencing strategies, although challenges in delivery, safety, and redundancy remain significant. This review integrates molecular mechanisms with translational perspectives, providing a comprehensive synthesis of how ncRNAs shape renal pathophysiology. By bridging mechanistic insights with emerging diagnostic and therapeutic applications, we highlight the potential of ncRNAs to transform nephrology, paving the way for biomarker-driven precision medicine and novel interventions aimed at intercepting kidney injury at its regulatory roots. In clinical terms, ncRNA-based biomarkers and therapeutics promise earlier detection, more precise risk stratification, and individualized treatment selection within precision nephrology.

Krešimir Mustapić, Petar Đolonga, Tomislav Ivanović, Ana Paparella Karaman, Lukáš Minař́ık, Katarina Vukojević, Merica Glavina Durdov

Simple Summary Advanced gastric cancer is generally associated with a poor prognosis. Stroma AReactive Invasive Front Area (SARIFA) is a recently recognized aggressive histological feature, defined as five tumor cells in direct contact with adipocytes within perigastric, submucosal, or perivascular adipose tissue. The aim of our retrospective study was to evaluate the correlation of SARIFA with pathohistological variables and its impact on overall survival. A cohort of 102 Croatian patients with locally advanced gastric cancer was analyzed, and a significant association between SARIFA and nodal metastases as well as perineural invasion was observed. Patients with both lymphovascular invasion and SARIFA had a significantly higher proportion of affected lymph nodes. They also exhibited a shorter, though not statistically significant, overall survival compared with patients with one or neither of these factors (median 9.2 vs. 16.1 months). A positive SARIFA status may serve as a biomarker of invasiveness and an additional prognostic risk factor. Abstract Background/Objectives: Advanced gastric cancer usually has an unfavorable prognosis. Stroma AReactive Invasion Front Area (SARIFA) is a newly recognized biomarker of aggressiveness, easily recognized as five tumor cells in direct contact with adipocytes in perigastric, submucosal, and perivascular adipose tissue. We investigated this phenomenon and correlated it with other pathohistological variables. Material and Methods: The sample includes 102 Croatian patients with locally advanced gastric cancer, who underwent total gastrectomy/lymphadenectomy between 2012–2018 and in 2023 at University Hospital Split, Croatia, and had pathological stage pT3 or pT4. Representative histological specimens were analyzed for SARIFA, and results were compared with other variables and overall survival. External validation and gene expression analysis of CD36 and FABP4 were performed using the TCGA-STAD cohort. Results: SARIFA was significantly associated with positive pN status (p = 0.009) and perineural invasion (p = 0.043). Patients with SARIFA had a more than fivefold increased risk of nodal involvement (OR = 6.35; 95% CI: 1.35–29.84; p = 0.019). Lymphovascular invasion (LVI) was associated with nodal disease (OR = 4.39; 95% CI: 1.194–16.143; p = 0.026), and SARIFA was marginally associated (OR = 4.886; 95% CI: 0.985–24.241; p = 0.052). Patients who had both LVI and SARIFA had a higher proportion of affected lymph nodes (p = 0.009). SARIFA status did not significantly affect overall survival. Gene expression analysis showed a significant increase in CD36 expression, while FABP4 expression was elevated but not statistically significant, in SARIFA-positive cases. Conclusions: SARIFA could be used as a marker for invasiveness and further investigated due to its predictive potential.

Bruno Minigo, Marin Ogorevc, Nela Kelam, Ante Čizmić, S. Zekić Tomaš, Katarina Vukojević, Sandra Kostić, Dubravka Vuković et al.

Background and objectives: Melanocytic nevi are among the most common skin lesions, yet their relationship with the peripheral nervous system has remained understudied. Given the neural crest origin of melanocytes and Schwann cells, and the neurotrophic signaling capabilities of pigment cells, this study aimed to investigate the density of nerve fibers within nevi and assess how it varies with respect to histological subtype and anatomical location. Materials and Methods: A total of 90 nevi were analyzed, including junctional, compound, and intradermal types, distributed across the head, trunk, and limbs. Immunofluorescence staining for the pan-neuronal marker PGP 9.5 and for CGRP were performed and nerve fiber density was quantified. Statistical evaluation using two-way ANOVA revealed that both nevus type and anatomical site significantly influenced the degree of total innervation. Results: Junctional nevi demonstrated the highest total nerve fiber density, significantly exceeding that of compound and intradermal nevi. Likewise, nevi located on the head exhibited a significantly greater density of PGP 9.5-positive nerve fibers compared to those on the trunk and limbs. No significant correlation was observed between nevus type and location, suggesting that both factors contribute independently to the differences in innervation. CGRP-positive innervation was uniform regardless of the histological type of nevus and anatomical location. Conclusions: These findings likely reflect the facts that junctional nevi reside at the dermo-epidermal junction, where nerve fibers are most abundant, while the skin of the head and neck is well known to be more richly innervated than other regions. In contrast, analysis of CGRP-positive fibers suggests that the heterogeneity detected with PGP 9.5 is primarily driven by other neuronal populations. The results support the hypothesis of a dynamic relationship between nevi and the peripheral nervous system, potentially mediated by neurotrophic factors. Understanding this interaction may provide insight into nevus biology, sensory symptoms reported in some lesions, and the evolving role of nerves in the tumor microenvironment.

Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević, D. Rušić, J. Božić

Obesity, a global health concern defined by excessive adiposity and persistent metabolic imbalance, has far-reaching implications that extend beyond standard metabolic and cardiovascular comorbidities. While the association between obesity and reproductive dysfunction is well-established, the precise molecular mechanisms underlying these associations remain incompletely understood, particularly as regards the distinction between obesity-specific effects and those mediated by dietary components or metabolic syndrome. The present review integrates currently available knowledge on the mechanisms through which obesity impairs reproductive function in both sexes, from gametogenesis to postnatal development. In males, obesity drives testicular inflammation, disrupts spermatogenesis, impairs sperm motility and DNA integrity, and alters key signaling pathways, with oxidative stress and metabolic endotoxemia as central mediators. In females, obesity induces ovarian dysfunction, alters steroidogenesis, compromises oocyte quality and disrupts follicular environments, leading to reduced fertility and adverse pregnancy outcomes. However, the relative contribution of obesity-induced inflammation vs. direct lipotoxic effects remains poorly characterized in both sexes. The present review further examines the impact of parental obesity on fertilization capacity, placental function and in utero development, highlighting sex-specific and intergenerational effects mediated by mitochondrial dysfunction and epigenetic modifications. Notably, maternal obesity impairs placental and fetal organ development, increases the risk of metabolic and reproductive disorders in offspring, and alters key developmental signaling pathways. While some studies suggest that lifestyle interventions and antioxidant therapies may partially reverse obesity-induced reproductive impairments, significant gaps remain in understanding the precise molecular mechanisms and potential for therapeutic rescue. By synthesizing findings from animal models and human studies, the present review highlights the pivotal role of oxidative stress as a mechanistic link between obesity and reproductive dysfunction. It emphasizes the need for further research to inform clinical strategies aimed at mitigating these adverse outcomes.

Petar Todorović, Mirko Maglica, Nela Kelam, N. Filipović, Azer Rizikalo, Ilija Perutina, J. Mišković, Yu Katsuyama et al.

Lung development is governed by tightly regulated signaling mechanisms, including endocytosis-mediated pathways critical for epithelial–mesenchymal communication and tissue remodeling. This study investigated the effects of Dab1 deficiency on the expression of endocytic and signaling-related proteins, Megalin, Cubilin, Caveolin-1, GIPC1, and Dab2IP, during embryonic lung development in yotari mice. Using immunofluorescence and quantitative image analysis, protein expressions were compared between yotari and wild-type embryos at gestational days E13.5 and E15.5. Results showed significantly reduced expression of Caveolin-1 in the yotari epithelium across both stages, along with diminished mesenchymal levels of Megalin and GIPC1 at E13.5. Cubilin and Dab2IP expression patterns showed no statistically significant differences, although developmental and compartmental shifts were observed. These findings suggest that Dab1 deficiency selectively disrupts endocytic and signaling scaffolds crucial for branching morphogenesis and alveolar maturation. The altered spatiotemporal expression of these proteins underscores the essential role of Dab1 in regulating lung epithelial–mesenchymal dynamics and maintaining developmental homeostasis during critical stages of organogenesis.

Petar Todorović, Nela Kelam, Anita Racetin, N. Filipović, Yu Katsuyama, M. Saraga-Babic, Katarina Vukojević

Background/Objectives: The Reelin–Dab1 signaling pathway, known for its crucial role in neurodevelopment, particularly in neuronal migration and the formation of cortical layers, has been a subject of extensive research. However, its involvement in gastrointestinal organogenesis is a relatively unexplored area. Our study investigates the expression patterns of Dab1, Reelin, PGP9.5, and Sox2 during stomach development in yotari (Dab1−/−) mice and aims to shed light on how Dab1 inactivation affects epithelial–mesenchymal signaling dynamics, thereby contributing to a deeper understanding of this pathway’s non-neural functions. Methods: Embryonic stomach tissues from yotari and wild-type mice, collected at developmental stages E13.5 and E15.5, were examined by immunofluorescenceto evaluate the difference in expression of Dab1, Reelin, PGP9.5, and Sox2. Semi-quantitative scoring and quantitative image analysis were used to assess protein localization and intensity within epithelial and mesenchymal compartments. Results: Dab1 expression was significantly increased in both the epithelium and mesenchyme of yotari mice at E13.5 and E15.5. Reelin expression in the epithelium showed a visible but statistically non-significant decrease in yotari at E15.5, while mesenchymal expression remained low and significantly lower than controls. PGP9.5 expression was significantly reduced in yotari epithelium at E13.5, then strongly upregulated at E15.5. Mesenchymal PGP9.5 remained consistently high. Sox2 showed no statistically significant changes but increased semi-quantitatively in yotari epithelium and mesenchyme at E15.5. These findings highlight compartment-specific disruptions and potential compensatory mechanisms following Dab1 inactivation. Conclusions: Our findings indicate that Dab1 deficiency leads to distinct molecular changes in epithelial and mesenchymal compartments of the developing stomach. The Reelin–Dab1 axis appears critical for epithelial–mesenchymal coordination, while PGP9.5 and Sox2 upregulation in yotari mice may represent potential compensatory responses that could support epithelial integrity, although this remains speculative without functional validation.

Jelena Komić, Nela Kelam, Anita Racetin, N. Filipović, M. Saraga-Babic, Dai Ihara, Yu Katsuyama, Katarina Vukojević

Congenital anomalies of the kidney and urinary tract (CAKUT) are the third most common congenital anomaly and a significant public health concern. It is the predominant cause of chronic renal disease in pediatric populations and the principal reason for kidney replacement therapy in individuals under 20, as well as the fourth leading cause in adults. Five candidate genes, including EDA2R, PCDH9, and TRAF7 were identified as potential contributors to CAKUT. These genes had not been previously prioritized in CAKUT research, and our prior studies have demonstrated that the proteins encoded by these candidate genes display dysregulated expression across various CAKUT subgroups. Our research examined the expression patterns of EDA2R, PCDH9, and TRAF7 in yotari (Dab1−/−) mice at two embryonic stages (E13.5 and E15.5) and two postnatal stages (P4 and P14) to ascertain the potential correlation between Reelin–Dab1 signaling, previously linked to CAKUT phenotypes, and the aforementioned proteins through molecular and morphological analyses. All three observed proteins exhibited the highest area percentage at E13.5, with a trend of decline into postnatal stages, during which specific changes in protein expression were noted between the cortex and medulla of yotari mice compared to wild-type mice. For TRAF7, a statistically significant difference in area percentage at E13.5 was observed, indicating a link with Reelin–Dab1 signaling and a potentially critical role in the pathophysiology of CAKUT, also marked by our prior study.

Patricija Bajt, Anita Racetin, Nela Kelam, Nikola Pavlović, Petar Todorović, Marinela Jelinčić Korčulanin, N. Filipović, I. Kuzmić Prusac et al.

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric renal failure, but the molecular mechanisms driving these conditions are not yet fully understood. Fibroblast Growth Factor 23 (FGF23) and its co-receptor α-KLOTHO play crucial roles in regulating calcium and phosphate homeostasis in adult kidneys, but their roles in kidney development and the pathogenesis of CAKUT remain unclear. Because of that, we analyzed the spatial and temporal expression of FGF23 and α-KLOTHO in normal fetal kidney development and CAKUT using an immunofluorescence technique. Our results demonstrate a dynamic pattern of FGF23 and α-KLOTHO expression in healthy kidney development, with FGF23 levels decreasing and α-KLOTHO levels increasing with gestational age. Also, we showed that FGF23 expression was significantly reduced in horseshoe (HKs) and duplex kidneys (DKs), while α-KLOTHO expression remained unchanged across all CAKUT conditions. Based on our results, we suggest that altered FGF23 expression in CAKUT contributes to disease pathogenesis and may represent a potential therapeutic target.

Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević, J. Božić

Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies.

Nela Kelam, Marin Ogorevc, Ivona Gotovac, I. Kuzmić Prusac, Katarina Vukojević, M. Saraga-Babic, S. Mardešić

Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane proteins that facilitate water transport across cell membranes. AQP1 is constitutively active in the kidneys and plays a crucial role in reabsorbing filtered water, while AQP2 is regulated by vasopressin and is essential for maintaining body fluid homeostasis. The primary objective of the present study is to investigate the spatio-temporal expression patterns of KLK6, AQP1, and AQP2 throughout normal human nephrogenesis and congenital kidney and urinary tract (CAKUT) abnormalities: duplex kidneys, horseshoe kidneys, and dysplastic kidneys. Methods: An immunofluorescence analysis of KLK6, AQP1, and AQP2 was performed on 37 paraffin-embedded fetal kidney samples. The area percentage of KLK6 in the kidney cortex was calculated in normal developing samples during developmental phases 2, 3, and 4 and compared with CAKUT samples. Results: KLK6 exhibits distinct spatiotemporal expression patterns during human kidney development, with consistent localization in proximal tubules. Its subcellular positioning shifts from the basolateral cytoplasm in early phases to the apical cytoplasm in later stages, which may be strategically positioned to act on its substrate in either the peritubular space or the tubular fluid. KLK6 expression followed a quadratic trajectory, peaking at Ph4. This marked increase in the final developmental phase aligns with its strong expression in mature kidneys, suggesting a potential role in proximal tubule differentiation and functional maturation through facilitating extracellular matrix remodeling and activating proteinase-activated receptors, modulating the signaling pathways that are essential for tubular development. In duplex kidneys, structural abnormalities such as ureteral obstruction and hydronephrosis may upregulate KLK6 as part of a reparative response, while its downregulation could impair epithelial remodeling and cytoskeletal integrity, exacerbating dysplastic phenotypes. Conclusions: These findings highlight the potential of KLK6 involvement in normal kidney development and the pathology of CAKUT.

Ivana Jurić, Nela Kelam, Anita Racetin, N. Filipović, Davor Čarić, Matko Rošin, Katarina Vukojević

Background: The main feature of osteoarthritis (OA) is the deterioration of articular cartilage, but numerous studies have demonstrated the role of synovial inflammation in the early stages of the disease, leading to further progression of OA. The WNT signaling pathway is involved in numerous activities in joint tissue, but there is a lack of evidence considering the role of WNT in OA synovitis. Our research aims to investigate the expression of WNT Family Member 5A/B (WNT5A/B), β-catenin, acetyl-α-tubulin, Dishevelled-1 (DVL-1), and Inversin (INV) in the synovial membrane of osteoarthritis (OA) hips. Methods: The immunohistochemical expressions of the aforementioned proteins in the synovial membrane were analyzed and compared with samples of control group participants with fractured femoral necks. Results: The immunoexpression of acetyl-α-tubulin was significantly increased in the intima (p < 0.0001) and subintima (p < 0.0001) of the group with OA compared with the intima and subintima of the control group. At the same time, acetyl-α-tubulin was also more highly expressed in the intima of the OA group than in the subintima of the OA group (p < 0.05); we found the same expression pattern in the control group (p < 0.0001). The differential analysis of the GEO dataset did not show significant differences between the osteoarthritis (OA) and control groups in the expression of TUBA1A. β-catenin was significantly increased in the subintima (p < 0.01) of the group with OA compared to the subintima of the control group. WNT expression has significantly higher positivity in the subintima than in the intima, especially in the control group (p < 0.01). WNT5A and WNT5B were significantly down-regulated in OA compared to the control in the differential analysis of the GEO dataset. The expression of INV and DVL-1 in our study and the differential analysis of the GEO dataset did not differ significantly between the osteoarthritis (OA) and control groups. Conclusions: Based on our results, we suggest that acetyl-α-tubulin and β-catenin might be involved in synovial membrane inflammation in OA and serve as potential therapeutic targets.

Danijel Bevanda, Anita Racetin, Nela Kelam, N. Filipović, Mateo Bevanda, Marina Rudan Dimlić, Jelena Budimir, Daniela Bevanda Glibo et al.

Simple Summary This research considers means of improving the early detection and treatment of colorectal cancer (CRC), a common and deadly form of cancer often identified too late for effective treatment. In our study, we examined AIFM3, VGLL4, and WNT4 in cancerous and healthy tissues at various stages of CRC. We found that these markers behave differently as the cancer advances. AIFM3 appears in healthy tissue and early cancer stages but disappears as the cancer worsens. VGLL4 increases in the affected tissues as the cancer progresses, particularly noticeable from early to more advanced stages. WNT4 is higher in cancerous tissues, but decreases in the supportive tissue surrounding cancer cells as the disease advances. Low VGLL4 levels are linked to better patient survival, unlike the other two markers. This finding suggests that VGLL4 could be useful as an indicator of CRC prognosis, potentially guiding treatment approaches.

Robert Stanić, Katarina Vukojević, N. Filipović, B. Benzon, Marin Ogorevc, Nenad Kunac, S. Čanović, Petra Kovačević et al.

Long-term use of topical prostaglandins might initiate chronic conjunctival inflammation, leading to poor outcomes of glaucoma surgery. The aim of this study was to evaluate the immunoexpression pattern of HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa in the conjunctiva, episclera, and deep sclera in patients with glaucoma undergoing deep sclerectomy in order to establish an association between staining intensities and prostaglandin F2 (PGF2) treatment. Double immunofluorescence (HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa) was performed on conjunctiva, episclera, and deep sclera samples, which were obtained from 23 patients treated with PGF2 and 8 patients without PGF2 treatment. When comparing the ocular tissues of patients regarding treatment with PGF2 analogs, we found a significant increase in the immunoexpression of HSP70 in the conjunctival epithelium of patients treated with PGF2 analogs compared to those without PGF2 treatment. These patients also had an increase in SNAIL immunoexpression and a decrease in aSMA immunoexpression in the deep sclera. There were no significant differences in HIFa, CTGF, or cMYB immunoexpression levels between the two groups. Further research into the regulation of these factors in ocular tissues could lead to the development of potential novel therapeutic approaches in glaucoma management.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više