The article describes the procedure for transformation between old and new horizontal geodetic datum in Bosnia and Herzegovina. Two triangle-based methods were used for transformation, which are based on irregular and regular triangular network. For development of transformation models two set of points were used, one for developing models (around 1200 points), and other for testing (around 850 points). Prior to development, all points were tested at presence of outliers, and outliers are marked in the points database. Results shows that large part of distortions in old triangulation network can be modeled with used methods. Maximal positional standard deviations with best model are 4.5 and 6.4 cm for two sets of points, respectively, while maximal positional discripencies are 30 and 40 cm for two sets of points. Each method has some advantages and disadvantages which are shown in this article. It is shown that the number, spatial distribution and quality of input data are crucial for development of highly accurate transformation model. Also, as an important contribution of this work, some problematic areas with irregular distortions are identified. Finally, some recommendations are given for improvement of developed models.
Deformation monitoring using Global Navigation Satellite Systems (GNSS) is a reliable technique today but requires strict standards in data processing and analysis. The procedure for determining the precise positioning and deformation analysis in the test network located nearby the Olympic stadium Koševo in Sarajevo, with an area of about 1 km square, is described. The observations are carried out using dual-frequency GNSS receivers and data are processed using by Trimble Business Center v4.00 software. The analysis is focused on comparing several variants of observation processing: GPS L1, GPS L1 + L2 and GNSS (GPS + GLONASS). Software OS JAG3D is used for deformation analysis. The results show that the reliability of the deformation estimated based on the GPS L1 variant is questionable since it does not detect displacements at all points. The second variant gives better results. The mean values of the differences of the determined simulated displacements are by components: 3 mm, 3 mm and 6 mm. The results determined using the third variant, i.e. GNSS, are the best, when the mean values of the displacement´s differences are: 4 mm, 3 mm and 2 mm, what indicates the recommendation to use this method in a project where high precision is required.
During the six millennia of the existence of the civilization on the Earth, surveying techniques have been experienced difficult foreseeable changes. The definition and role of geodesy have been changing accordingly. Geodesy has evolved from its original classic definition that "studying the movements of celestial bodies, the shape and dimensions of the Earth" in the "science which, beside it noted above, studies its changes and complex dynamic processes that ongoing inside the Earth, on the surface, above its surfaces, and evironment. The paper is overview of the geodetic techniques and the surveying instruments, cadastre and cartography in the ancien civilizations: Mesopotamia, ancient Egypt, antic Greece, ancient Rome, to the Europeans, from the 17th century to modern times. A detailed description devoted to surveying and geodetic works in Bosnia and Herzegovina, from the time of Ottoman Empire, through the Austro-Hungarian survey, to the modern achievements Global Geodetic Observing System-GGOS, the main component of the International Association of Geodesy described at the end.
This paper shows newer approach that has long been used worldwide in the design and processing of measurement in geodetic networks in Bosnia and Herzegovina. Combining GPS and terrestrial measurements gives very good results in the built (urban) areas. The most important thing is to choose the proper place to set GPS points. Another important task of the designer is to find the optimal ratio of GPS and traverse points. This paper presents the improved accuracy of traverse points by inserting an additional GPS points.
This paper presents a Hannover method and its application in the deformation analysis. Hannover method determines the displacements of the geodetic network points, based on the geodetic measurements using the statistic methods. Application of determining unstable points displacements is shown in the example of microtriangulation network.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više