Respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD), are affecting a huge percentage of the world’s population with mortality rates exceeding those of lung cancer and breast cancer combined. The major challenge is the number of patients who are incorrectly diagnosed. To address this, we developed an expert diagnostic system that can differentiate among patients with asthma, COPD or a normal lung function based on measurements of lung function and information about patient’s symptoms. To develop accurate classification algorithms, data from 3657 patients were used and then independently verified using data from 1650 patients collected over a period of two years. Our results demonstrate that the expert diagnostic system can correctly identify patients with asthma and COPD with sensitivity of 96.45% and specificity of 98.71%. Additionally, 98.71% of the patients with a normal lung function were correctly classified, which contributed to a 49.23% decrease in demand for conducting additional tests, therefore decreasing financial cost.
The TIGER-3 radar is being developed as an “all digital” radar with 20 integrated digital transceivers, each connected to a separate antenna. Using phased array antenna techniques, radiated power is steered towards a desired direction based on the relative phases within the array elements. This paper proposes an accurate phase measurement method to calibrate the phases of the radio output signals using Field Programmable Gate Array (FPGA) technology. The method sequentially measures the phase offset between the RF signal generated by each transceiver and a reference signal operated at the same frequency. Accordingly, the transceiver adjusts its phase in order to align to the reference phase. This results in accurately aligned phases of the RF output signals and with the further addition of appropriate phase offsets, digital beamforming (DBF) can be performed steering the beam in a desired direction. The proposed method is implemented on a Virtex-5 VFX70T device. Experimental results show that the calibration accuracy is of 0.153 degrees with 14 MHz operating frequency.
This paper proposes a novel watermarking algorithm in digital images to ensure the imperceptible characteristics of the watermarks, reducing the effects on images quality while maintaining recoverability. The proposed method is performed by embedding watermarks in the DCT domain. DCT coefficients, which are selected to be embedded, or not, are based on an evaluation of watermark robustness during the quantization phase of the JPEG Baseline method. Results of the algorithm have been evaluated using Matlab.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više