Logo

Publikacije (40)

Nazad
M. Bošković, M. Frantlović, E. Milinković, P. Poljak, D. V. Radović, Jelena N. Stevanovic, M. Sarajlić

Self-powered sensors are gaining a lot of attention in recent years due to their possible application in the Internet of Things, medical implants and wireless and wearable devices. Human breath detection has applications in diagnostics, medical therapy and metabolism monitoring. One possible approach for breath monitoring is detecting the humidity in exhaled air. Here, we present an extremely sensitive, self-powered sensor for breath humidity monitoring. As a power source, the sensor uses electromagnetic energy harvested from the environment. Even electromagnetic energy harvested from the human body is enough for the operation of this sensor. The signal obtained using the human body as a source was up to 100 mV with an estimated power of 1 nW. The relatively low amount of energy that could be harvested in this way was producing a signal that was modulated by an interdigitated capacitor made out of electrochemically activated aluminum. The signal obtained in this way was rectified by a set of Schottky diodes and measured by a voltmeter. The sensor was capable of following a variety of different respiration patterns during normal breathing, exercise and rest, at the same time powered only by electromagnetic energy harvested from the human body. Everything happened in the normal environment used for everyday work and life, without any additional sources, and at a safe level of electromagnetic radiation.

M. Ognjanović, K. Nikolić, M. Bošković, F. Pastor, N. Popov, M. Marciuš, S. Krehula, B. Antić et al.

Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.

Kristina Radinović, J. Milikić, A. Balčiūnaitė, Z. Sukackienė, M. Bošković, L. Tamašauskaitė-Tamašiūnaitė, B. Šljukić

Six cobalt gold (CoAu) electrodes were prepared by electroless deposition using different gold-containing solutions (acidic and weakly acidic) and different Au deposition times. Characterization of CoAu electrodes was done by scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2-sorption, and X-ray powder diffraction techniques. The possibility of using the prepared electrodes in environmental applications, i.e., for the electrochemical sensing of a trace amount of arsenic(iii) in weakly alkaline media was assessed. Employing the CoAu electrode (prepared by immersing Co/Cu into 1 mM HAuCl4 (pH 1.8) at 30 °C for 30 s) under optimized conditions (deposition potential −0.7 V and deposition time of 60 s), a low limit of detection of 2.16 ppb was obtained. Finally, this CoAu electrode showed activity for arsenic oxidation in the presence of Cu(ii) as a model interferent as well as in real samples. Furthermore, the use of CoAu electrode as an anode in fuel cells, namely, direct borohydride – hydrogen peroxide fuel cells was also assessed. A peak power density of 191 mW cm−2 was attained at 25 °C for DBHPFC with CoAu anode at a current density of 201 mA cm−2 and cell voltage of 0.95 V, respectively. The peak power density further increased with the increase of the operating temperature to 55 °C.

M. Bošković, Stanislav Andreev, D. Schollmeyer, P. Koch

Reaction of diphenylmethanol (4) with n-butyllithium and subsequent treatment with selenium resulted in 12H-dibenzo[d,g][1,2,3]triselenocin-12-ol (5) comprising a novel heterocyclic ring system. The title compound 5 was analyzed by 1H-NMR, 13C-NMR and HPLC. Additionally, the structure of 5 was confirmed by single crystal X-ray diffraction.

I. Mladenović, M. Bošković, M. Vuksanović, N. Nikolić, J. Lamovec, D. Vasiljević-Radović, V. Radojević

Mechanical (hardness and adhesion) and electrical (sheet resistance) characteristics of electrolytically produced copper coatings have been investigated. Morphologies of Cu coatings produced galvanostatically at two current densities from the basic sulfate electrolyte and from an electrolyte containing levelling/brightening additives without and with application of ultrasound for the electrolyte stirring were characterized by SEM and AFM techniques. Mechanical characteristics were examined by Vickers microindentation using the Chen–Gao (C–G) composite hardness model, while electrical characteristics were examined by the four-point probe method. Application of ultrasound achieved benefits on both hardness and adhesion of the Cu coatings, thereby the use of both the larger current density and additive-free electrolyte improved these mechanical characteristics. The hardness of Cu coatings calculated according to the C–G model was in the 1.1844–1.2303 GPa range for fine-grained Cu coatings obtained from the sulfate electrolyte and in the 0.8572–1.1507 GPa range for smooth Cu coatings obtained from the electrolyte with additives. Analysis of the electrical characteristics of Cu coatings after an aging period of 4 years showed differences in the sheet resistance between the top and the bottom sides of the coating, which is attributed to the formation of a thin oxide layer on the coating surface area.

N. Popov, M. Bošković, M. Perović, K. Zadro, V. Gilja, L. K. Krehula, Marko Robić, M. Marciuš et al.

I. Mladenovic, M. Bošković, J. Lamovec, M. Vuksanović, N. Nikolić, V. Radojević, D. Vasiljević-Radović

Electrochemically deposited copper coatings obtained from sulfate baths on brass substrates in the regime of direct current (DC) with and without an application of ultrasound mixing of electrolytes (DC/US) have been studied. The aim of the research was analysis of the influence of current density, ultrasonic mixing of electrolyte and presence of additives on the electrodeposited coatings, in order to obtain uniform compact coatings suitable for potential application in MEMS devices. Structural, electrical and mechanical behavior of thin copper coatings were investigated using SEM, AFM, four- point probe method and Vickers hardness test.

J. Marinković, B. Nikolić, Tatjana Marković, M. Radunović, J. Ilic, M. Bošković, A. Ćirić, D. Markovic

Aim: The objective was to formulate and characterize the nanoemulsion based on Cymbopogon citratus oil, intended for use in teeth infected root canal therapy. The investigation of the antioxidant and antibiofilm potential toward Enterococcus faecalis was aimed as well. Materials & methods: Characterization of oil (by GC/MS analysis) and nanoemulsion (by dynamic light scattering instrument), and determination of antibacterial (by microdilution assay), antibiofilm (by crystal violet assay) and antioxidant properties (by 2,2-diphenyl-1-picryl-hydrazyl-hydrate and thiobarbituric acid assay methods) were provided. Antibiofilm efficacy of irrigation procedure including nanoemulsion was screened on extracted teeth (by CFU counting assay). Results: Notable antibacterial and antibiofilm activity, both against forming and preformed biofilms of oil, was observed. Irrigation involved nanoemulsion showed remarkable antibiofilm potential. Both substances induced some antioxidant activity. Conclusion: Results encourage further research with the aim of application of the nanoemulsion in dental practice.

S. Arndt, F. Fadil, K. Dettmer, P. Unger, M. Bošković, Claudia Samol, A. Bosserhoff, J. Zimmermann et al.

Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.

M. Bošković, B. Šljukić, D. V. Radović, K. Radulović, M. R. Rafajilović, M. Frantlović, M. Sarajlić

A detailed examination of the principle of operation behind the functioning of the full-self-powered humidity sensor is presented. The sensor has been realized as a structure consisting of an interdigitated capacitor with aluminum thin-film digits. In this work, the details of its fabrication and activation are described in detail. The performed XRD, FTIR, SEM, AFM, and EIS analyses, as well as noise measurements, revealed that the dominant process of electricity generation is the electrochemical reaction between the sensor’s aluminum electrodes and the water from humid air in the presence of oxygen, which was the main goal of this work. The response of the sensor to human breath is also presented as a demonstration of its possible practical application.

Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!

Pretplatite se na novosti o BH Akademskom Imeniku

Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo

Saznaj više