Nowadays, automatic systems are using in more spheres of industry, and in this way, human intervention is avoided and used as minimally as possible. In the chicken poultry industry, the use of mother hens is transferring to automatic egg incubating systems. Such systems are helpful for the farmers to incubate the eggs automatically without the need for human intervention. These systems work by keeping the physical quantities, temperature and humidity, at the optimal level. In that way, the fetuses inside eggs are growing without the presence of the mother hen. The egg incubating systems not only improve poultry production considerably but also help in the regularity of income making, enabling the farmers to be able to get transition into possible rural entrepreneurship. This paper describes the design and implementation of a fuzzy control system for egg incubating based on IoT technology. The microcontroller is programmed to work as a fuzzy logic control system for controlling microclimate conditions in the egg incubator to keep the conditions for different eggs type optimal. Informations from the temperature and humidity sensors are sent wirelessly to the cloud. Also, the implemented egg incubating system enables automatic tracking of the remaining days until hatching chickens. In this way, remote monitoring, from any location, of microclimatic conditions inside the egg incubator is enabled. For the experimental work analysis of the implemented egg incubating system, the egg incubator is made. Based on the results of the experimental work analysis can be seen that the egg incubating system works well and that it helps with improving poultry production.
With the development of modern technology, smartphones have become a necessity for most people. Among other uses, mobile phones are increasingly being used in smart home systems. In smart homes, mobile phones are used to remotely control and monitor various systems such as simply turning on/off lights and household appliances, various monitoring systems, etc. Nowadays, sending coded messages or pressing application buttons is increasingly being avoided in process of developing smart systems. More and more frequently is used voice commands. The system which uses voice commands for remote control and monitoring smart home is described in this paper. In the implemented system, the user is able, using specific voice commands to remotely control the operation of various appliances in his home. An Android application was designed to control the implemented system. Using the designed Android application, the user controls the desired home devices with specific voice commands. Also, on the designed Android application are buttons that the user can use, in case the user’s voice is not recognized in the implemented system. For experimental work analysis, the model of the home is made with lights and different home appliances inside. The results of the experimental work analysis of the implemented system show this system is very simple to use and very efficient. Also, the latest technology for remote control and monitor smart systems is applied in the proposed smart home system.
The development of teleoperation systems, robots, or any physical part of the system can be costly and if something goes wrong it can lead to development overdue. Precisely for these reasons, engineers and scientists today resort to the development of simulated systems before the construction of a real system. Robot Operating System (ROS) is one of the most popular solutions for robot development, manipulation, and simulation. In this paper, we present a web application for remote control of a ROS robot. The robot is controlled via a web application that is used as a virtual Joystick. Also, in this paper, an experimental work analysis of the projected system is performed. Further research possibilities include upgrading the presented web interface, adding certain motion autonomy sensors, or integrating some path planning algorithms.
Modern controlling flows today are unimaginable without the comprehensive use of computers. This paper describes the practical application of the PLC (Programmable Logic Controller) controller for controlling real-time intelligent traffic lights, and for the needs of the above, a traffic junction with a corresponding signaling was created, and an intelligent traffic light controlling system was implemented. For the realization of this work, the SIEMENS, SIMATIC S7-300 PLCs were used, which, with the help of sensors, monitors and manages the operation of the entire system. After the implementation of intelligent traffic control system, the results obtained by controlling traffic lights with and without the use of sensors are presented, and a comparative analysis is presented.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više