As surface wear is one of the major failure mechanisms in many applications that include polymer gears, lifetime prediction of polymer gears often requires time-consuming and expensive experimental testing. This study introduces a contact mechanics model for the surface wear prediction of polymer gears. The developed model, which is based on an iterative numerical procedure, employs a boundary element method (BEM) in conjunction with Archard’s wear equation to predict wear depth on contacting tooth surfaces. The wear coefficients, necessary for the model development, have been determined experimentally for Polyoxymethylene (POM) and Polyvinylidene fluoride (PVDF) polymer gear samples by employing an abrasive wear model by the VDI 2736 guidelines for polymer gear design. To fully describe the complex changes in contact topography as the gears wear, the prediction model employs Winkler’s surface formulation used for the computation of the contact pressure distribution and Weber’s model for the computation of wear-induced changes in stiffness components as well as the alterations in the load-sharing factors with corresponding effects on the normal load distribution. The developed contact mechanics model has been validated through experimental testing of steel/polymer engagements after an arbitrary number of load cycles. Based on the comparison of the simulated and experimental results, it can be concluded that the developed model can be used to predict the surface wear of polymer gears, therefore reducing the need to perform experimental testing. One of the major benefits of the developed model is the possibility of assessing and visualizing the numerous contact parameters that simultaneously affect the wear behavior, which can be used to determine the wear patterns of contacting tooth surfaces after a certain number of load cycles, i.e., different lifetime stages of polymer gears.
With the ever-increasing number of polymer materials and the current number of commercially available materials, the polymer gear design process, regarding the wear lifetime predictions, is a difficult task given that there are very limited data on wear coefficients that can be deployed to evaluate the wear behavior of polymer gears. This study focuses on the classic steel/polymer engagements that result in a wear-induced failure of polymer gears and proposes a simple methodology based on the employment of optical methods that can be used to assess the necessary wear coefficient. Polymer gear testing, performed on an open-loop test rig, along with VDI 2736 guidelines for polymer gear design, serves as a starting point for the detailed analysis of the wear process putting into service a digital microscope that leads to the evaluation of the wear coefficient. The same wear coefficient, as presented within the scope of this study, can be implemented in a rather simple wear prediction model, based on Archard’s wear formulation. The developed model is established on the iterative numerical procedure that accounts for the changes in tooth flank geometry due to wear and investigates the surface wear impact on the contact pressure distribution to completely describe the behavior of polymer gears in different stages of their lifetime. Although a simple one, the developed wear prediction model is sufficient for most engineering applications, as the model prediction and experimental data agree well with each other, and can be utilized to reduce the need to perform time-consuming testing.
Bridge crane is exposed to dynamic loads during its non-stationary operations (acceleration and braking). Analyzing these operations, one can determine unknown impacts on the dynamic behavior of bridge crane. These impacts are taken into consideration using selected coefficients inside the dynamic model. Dynamic modelling of a bridge crane in vertical plane is performed in the operation of the hoist mechanism. The dynamic model is obtained using data from a real bridge crane system. Two cases have been analyzed: acceleration of a load freely suspended on the rope when it is lifted and acceleration of a load during the lowering process. Physical quantities that are most important for this research are the values of stress and deformation of main girders. Size of deformation at the middle point of the main crane girder is monitored and analyzed for the above-mentioned two cases. Using the values of maximum deformation, one also obtains maximum stress values in the supporting construction of the crane.
(1) Background: With the ever-increasing number of polymer materials and limited data on polymer gear calculations, designers are often required to perform extensive experimental testing in order to establish reliable operational data for specific gear applications. This research investigates the potential of a Polyvinyldene fluoride (PVDF) polymer material in gear applications, considering various loading conditions and different types of gear transmission configurations, including both self-mated mesh and steel/PVDF mesh. (2) Methods: PVDF gear samples were tested on a specially designed test rig that enables active torque control and temperature monitoring in order to obtain the necessary design parameters and failure modes. Each test for certain load conditions was repeated five times, and to fully investigate the potential of PVDF gear samples, comparative testing was performed for Polyoxymethylene (POM) gear. (3) Results: Tribological compatibility, tooth load capacity, and lifespan assessment, along with the types of failure, which, for some configurations, include several types of failures, such as wear and melting, were determined. Temperature monitoring data were used to estimate the coefficient of friction at the tooth contact of analyzed gear pairs, while optical methods were used to determine a wear coefficient. (4) Conclusions: The tribological compatibility of polymer gear pairs needs to be established in order to design a gear pair for a specific application. PVDF gear samples mated with steel gear showed similar lifespan properties compared to POM samples. Temperature monitoring and optical methods serve as a basis for the determination of the design parameters. PVDF is an appropriate material to use in gear applications, considering its comparable properties with POM. The particular significance of this research is reflected in the establishment of the design parameters of PVDF gear, as well as in the analysis of the potential of the PVDF material in gear applications, which gives exceptional significance to the current knowledge on polymer gears, considering that the PVDF material has not previously been analyzed in gear applications.
This study performed a mechanical stability analysis for the impact of axial pressure on an Ultra X external unilateral fixation device applied to a tibia with an open fracture. The real construction of the fixation device was used to create a 3D geometric model using a Finite Element Method (FEM) model, which was made to perform structural analysis in the CATIA V5 (Computer Aided Three-dimensional Interactive Application) CAD/CAE system. Specific stresses and displacements were observed at points of interest using structural analysis. The focus was on the relative displacements of the proximal and distal bone segments in the fracture zone. These displacements were used to calculate the stiffnesses of the bone in the fracture zone and the fixation device itself. The results obtained provide the necessary information regarding the stability of the Ultra X fixation device.
This paper presents a comparative analysis of the biomechanical characteristics of an external fixator with a frame made of two different materials (stainless steel and composite material) during anterior–posterior bending. Before the test itself, two representative configurations of the Sarafix fixator were selected for application on the lower leg and upper extremities under the designations B50 and C50, which are most widely used in orthopedic practice. The examination of the biomechanical characteristics of the external fixator was carried out using the structural analysis of the construction performance of the Sarafix fixator using the finite element method, the results of which were verified through experimental tests. The developed experimental and FEM models study the movement of the fracture crack and enable the determination of the stiffness of structural designs as well as the control of the generated stresses at the characteristic locations of the fixator. The results show that the fixator with a carbon frame has lower stresses at critical points in the construction compared to the fixator with a steel frame, in the amount of up to 49% (at the measuring point MT+) or up to 46% (at the measuring point MT−) for both fixture test configurations. The fixator with a carbon frame has greater displacements at the fracture site compared to the fixator with a steel frame, in the amount of up to 45% (for configuration B50) or up to 31% (for configuration C50). The stiffness of the structure for both test configurations of the fixator is lower in the fixator with a carbon frame compared to the fixator with a steel frame by up to 27%. Based on the findings of this study, we can conclude that a fixator with a steel frame has better biomechanical characteristics compared to a carbon frame.
Analysis of mechanical properties of external unilateral fixation device „ Ultra X “, in the case of torque load, is presented in this paper. Fixation device is applied on lower leg in the case of unstable fracture. Computer aided design (CAD) model and finite element model (FEM) are developed according to the dimensions and material properties of real fixation device. In the next step principal stress and deformation analysis is performed in CATIA V5 software. During numerical analysis values of stresses at critical places are monitored and analyzed. In addi - tion, values of displacements are measured on important places on fixation device and bone fracture. Using values of displacements at the place of bone fracture, stiffness of the fracture is calculated. The same methodology is used to calculate stiffness of the fixation device. Using obtained results, several conclusions about the mechanical properties of the fixation device “Ultra X” are formulated at the end of the paper.
This article explores a possibility to improve mathematical teaching by using 3D printing technology. The question is whether it is possible to use low cost additive manufacturing technology to develop and manufacture real physical prototypes of complex mathematical surfaces and volumes and on that way improve mathematics education. Five mathematical problems were chosen as case studies. Visualization of this problems was done using professor hand drawing, using computer visualization and using development and manufacturing of real physical prototypes. To find out how much better is understanding of these problems, survey with 57 students is carried out. Results showed significant improvements of understanding and better visualization of selected mathematical problems.
In this research, an analysis of the mechanical behaviour for the Orthofix external fixation device under the impact of torque was performed. Research considers application of the Orthofix device on the tibia bone for the case of unstable fracture. 3D (Three Dimensional) model of the Orthofix device was created in the CATIA (Computer Aided Three-Dimensional Interactive Application) software, based on the real device construction. Structural analysis was used to monitor and analyse the stress magnitudes on the specific areas of the fixation device and fracture. With usage of the interfragmentary displacement data for the bone fragments, degrees of stiffness are introduced for the fracture and fixation device. Obtained results are used to specify the mechanical behaviour of the Orthofix fixation device.
Analysis of mechanical stability for external fixation device Orthofix in the case of anterior-posterior bending is carried out in this paper. Device is applied to the lower leg for the case of unstable fracture. Real device is mea sured and 3D CAD model is developed. CAD model is used for numerical structural stress analysis which is car ried out using CATIA V5 software. Results for displacements are obtained for selected critical places on the device and for the place of fracture. In addition, values of principal and von Misses stresses are obtained and analyzed. Using obtained results, conclusions about mechanical stability of device are formulated.
The paper analyzes the stiffness of the Orthofix external fixation system at axial pressure load, applied to the lower leg in case of an unstable fracture. Based on the actual construction of the Orthofix fixator, its 3D model was formed, and then a structural analysis was performed in the CATIA V5 software system. The aim of this paper is to investigate the mechanical properties of Orthofix fixator. FEM analysis of the fixator revealed displacements at characteristic points of the structure and fractures. During the FEM analysis, it is possible to change the load values, all with the aim of obtaining the best possible information about the behavior of the fixator during installation and use by the patient. Based on the results obtained from the FEM analysis, it can be concluded that the Orthofix fixative shows very good stiffness, but also that it can be improved by using newer materials, such as composite or some alloys of titanium and aluminum.
The paper explores importance of rapid prototyping technology, as an important part of Industry 4.0, in product development and design process. Current state of this technology is explored in detail, with special focus of places and processes where this technology plays important role inside Industry 4.0. Paper answers several questionssuch as: does this technology have its future inside Industry 4.0, is this technology integral part of Industry 4.0 or just one aspect, has the time come to call this technology rapid manufacturing (of final products) instead of rapid prototyping (of prototypes)?Industry 4.0 implies rapid prototyping of final products, not only its prototypes. Main representative of rapid prototyping technology is additive manufacturing. Today, additive manufacturing technologies do not only serve for prototyping. They are becoming increasingly used for manufacturing of final fully functional products. Product development and design process inside Industry 4.0 must be adopted to new market demands which implies fast development and design and fast manufacturing. The time from initial concept design to the final product manufacturing must be as short as possible. The paper provides answers to the above stated questions. In addition, real examples of product development and design of prototypes and real fully functional products are presented, with a special focus on products and prototypes developed in Bosnia and Herzegovina.
The goal of this research is development, design and manufacturing of CNC milling machine prototype using standard aluminium profiles. Machine is a three axis’s machine and it is developed primarily for education in the field of wood machining. It can be used also for machining of light metal parts. Main initial goal of the machine development was the low cost for its manufacturing. To achieve this goal, rapid prototyping technology was used to manufacture most of the machine parts. In addition, a lot of standard parts are used. The detail methodology for machine development, design and manufacturing are shown in this paper. Design process includes development of CAD models, calculation of all necessary critical parts, selections of materials and development of machine subassemblies and assemblies.
This paper describes comparative analysis of the biomechanical performances conducted on the external fixation devices whose frames are made out of two different material (stainless steel and composite material). Biomechanical properties were determined with experimental and FEM (finite element method) models which are used to study the movement of the fracture crack, establish stiffness of the design solutions and monitor generated stresses on the zones of interest. Geometric modeling of two fixation devices configurations B50 and C50 is used as a basis for structural analysis under the impact of axial load. Structural analysis results are confirmed with an experimental setup. Analyzed deflection values in the load and fracture zones are used to define the exact values of the stiffness for the construction design and fracture, respectively. The carbon frame device configuration has 28% lower construction stiffness than the one with the steel frame (for B50 configuration), i.e., 9% (for C50 configuration). In addition, fracture stiffness values for the composite frame application are approximately 23% lower (B50 configuration), i.e., 13% lower (C50 configuration), compared to steel frame. The carbon frame device has about 33% lower stresses at the critical zones compared to the steel frame at the control zone MM+ and, similarly, 35% lower stresses at the control zone MM-. With an exhausting analysis of the biomechanical properties of the fixation devices, it can be concluded that steel frame fixation device is superior, meaning it has better biomechanical characteristics compared to carbon frame fixation device, regarding obtained data for stresses and stiffnesses of the frame construction and fracture. Considering stresses at the critical zones of the fixation device construction, the carbon frame device has better biomechanical performances compared to steel frame devices.
Nema pronađenih rezultata, molimo da izmjenite uslove pretrage i pokušate ponovo!
Ova stranica koristi kolačiće da bi vam pružila najbolje iskustvo
Saznaj više